使用1。通过编写灭菌器编号(如果有多个),标签上的负载号和处理日期来识别Bionova®BT225SCBI。2。根据建议的灭菌做法,将SCBI和材料一起在适当的包装中进行灭菌。将包装放置在那些被认为是绝育剂最无法获得的区域(例如,负载中心和门附近的区域)。3。照常消毒。4。灭菌过程完成后,打开灭菌器门,等待五分钟,然后从包装中删除SCBI。注意:从灭菌包装中卸下Bionova®BT225SCBI时,戴上安全眼镜和手套。警告:不要过度压碎或处理SCBI,因为这可能会导致玻璃安培破裂。5。让SCBI冷却直至达到室温。6。检查SCBI标签上的过程指标。向棕色的颜色变化表明SCBI已暴露于蒸汽中。重要:这种颜色变化没有证明实现无菌性的过程有效性。如果过程指示器颜色尚未更改,请检查灭菌过程。7。按盖子密封管子。将SCBI中包含的Amboule粉碎,上面装有单个Ampoule碎碎机或放置在Bionova®Photo-PhotoN®自动阅读器孵化器(BPH)后面的Ampoule破碎机。然后剧烈摇动管子,直到介质到达管的底部并完全浸泡孢子载体。孢子载体的不完全润湿可能导致荧光读数不正确。最后,将SCBI放在孵化器中。重要:在运行灭菌周期时,至少每天至少每天使用一次非杀菌的SCBI作为阳性对照。阳性控制可确保满足正确的孵化条件;培养基促进快速增长的能力;孢子活力并未因储存温度,湿度或靠近化学物质以及Bionova®Photon®自动读取器孵化器(BPH)的正常功能而受到损害。,正面对照指标和处理后的指示器应属于同一批次。8。在Bionova®Photon®自动读取器孵化器(BPH)中,在60±2°C下孵育处理的生物学指标和阳性对照指标,以进行7秒钟,以进行即时荧光读数。注意:灭菌和孵育之间的时间不应超过7天的时间。由自动阅读器(激发340-380 nm /发射455-465 nm)检测到的荧光强度,孵育7秒后决定了消毒过程的效率。阳性对照必须给出正荧光读数,以使结果有效。记录阳性结果并立即丢弃SCBI,如下所示。
Lisa Abe“ Secernin-1在阿尔茨海默氏病的Tau磷酸化中的可能作用”大学研究学者Hayley Ackerman“埃及(1922-1937):世界大战间的主权签名和后殖民地的局限 Pollution in MacroInvertebrate Analysis” Collegiate R esearch Scholar Evie Bair “Las Meninas and The Prado Museum's Changing Relation to Spanish Society” Robert A Fowkes Research Scholar Ethan Bakal “Characterizing and contextualizing the spore coat protease PrkA in Bacillus subtilis” Max Bronner Research Scholar Freddy Barrera “The Impact of Economic Recession on Deportations of Undocuted Latinx Immigrants in the United States” Collegiate R esearch Scholar Yiming Bian “coupled oscillation of firefly, the spontaneous synchronization in nature” Collegiate R esearch Scholar Ivan Brea “Divine Mediations: Representations of Religion, Clericalism, and Religious Imagery in Mexican Cinema (1917-2018)” Collegiate R esearch Scholar Violet Brede “Children's beliefs about the consequences of economic disadvantage in education and工作”约翰·G·弗莱明研究学者
8 程序 ................................................................................................................................................................................................................ 6 8.1 一般建议 ................................................................................................................................................................................ 6 8.2 菌株制备 ................................................................................................................................................................................ 6 8.2.1 总则 ................................................................................................................................................................................ 6 8.2.2 细菌和白色念珠菌悬浮液的制备 ............................................................................................................. 9 8.2.3 巴西曲霉孢子原液悬浮液的制备 ............................................................................................................. 9 8.2.4 校准悬浮液浓度的控制 ............................................................................................................................. 10 8.3 无微生物生长 ................................................................................................................................................................ 10 8.3.1 固体培养基 ................................................................................................................................................................ 10 8.3.2 液体培养基和稀释液 ................................................................................................................................................ 10 8.4 生长促进................................................................................................................................................................................ 10 8.4.1 固体培养基 ................................................................................................................................................................ 10 8.4.2 液体培养基 ................................................................................................................................................................ 11 8.5 选择性特性 ................................................................................................................................................................ 11 8.5.1 固体培养基 — 用于指示性特性 ............................................................................................. 11 8.5.2 固体培养基 — 用于抑制特性 ............................................................................................................. 11
摘要。Mugiastuti E,Manan A,Soesanto L.2023。玉米唐尼霉菌的生物控制与拮抗细菌联盟。生物多样性24:4644-4650。唐尼霉菌是玉米的主要疾病之一,这是印度尼西亚玉米生产的限制因素。拥有玉米 - 土著拮抗剂细菌的财团,预计生物控制将减少霉菌。这项研究的目的是确定三种拮抗细菌杆菌氨基甲基菌Faciens BB.R3,枯草芽孢杆菌BB.B4,Pseudomonas putida bb.r1在抑制Peronoslerospora spp。基于研究结果,拮抗细菌B. amyloliquefaciens bb.r3,B。B。uttilis bb.b4和P. putida bb.r1能够抑制76.68-100%的孢子发芽。枯草芽孢杆菌BB的细菌联盟。b4 +假单胞菌putida bb.r1是拮抗细菌的最佳财团,并且具有最大的潜力作为质感控制并促进玉米的生长。这个细菌财团延迟了孵化期,降低了疾病的强度(85.77%)和AUDPC(83.02%),增加了酚含量(单宁,糖苷,糖苷和皂苷),并促进了植物的生长,并促进了工厂高度(工厂高度138.10%的工厂,植物的重量为102.29%,植物的重量为102.29%,植物的重量为102.29%。与对照相比,为1077.04%)。与杀菌剂金属酰基相比,用拮抗细菌治疗的结果更好。基于结果,应用拮抗细菌财团是控制玉米唐尼霉菌的潜在策略。
在牙科环境中传播传染性药物和牙科医疗保健人员(DHCP)很少。但是,从2003年到2015年,已经记录了包括患者到患者的传播在内的牙科环境的传播。1 - 4在大多数情况下,研究人员未能将预防和控制的特定特定失误与特定传播联系起来。然而,报告的基本感染预防程序中发生的细分包括不安全的注射习惯,未对患者之间的牙科手机进行加热以及无法监测的(例如,进行孢子测试)自压。2,3这些报告强调了需要进行全面培训,以提高对基本原则,推荐做法,实施以及必须满足疾病传播的条件的理解。
摘要:自然生物材料是由自组装过程形成的,并催化了无数的反应。在这里,我们报告了具有工程细菌孢子的设计合成聚合物的程序组合组件。这种自组装过程是由孢子表面聚糖的动态共价形成驱动的,并产生结构稳定,自我修复和可回收的宏观材料。mo-ncular编程塑造了这些材料的物理特性,而代谢性休眠的孢子则可以进行较长的环境储存。具有遗传编码功能的孢子掺入可以使操作简单且重复的酶促催化。我们的工作为可持续生物催化的强大材料可扩展和可编程合成奠定了重要的基础。
是食品加工者最关心的问题。从加工角度来看,细菌可分为致病菌或腐败菌,具体取决于它们是否会导致疾病。此外,某些类型的细菌,即芽孢形成菌,在暴露于不利的环境条件时,会通过形成芽孢进入休眠状态,而其他一些类型的细菌即使在不利的条件下也不能形成芽孢,只能以营养细胞的形式存在。就耐热性而言,营养细胞更容易被热破坏,而芽孢往往更耐热。一些非致病菌可能会分泌酶并导致食物腐败。采用适当的温和热处理可以破坏低酸和酸性食品中的非芽孢形成菌的细胞,包括肉毒梭菌的营养细胞。
A. flavus-oryzae组包括对某些东方食品和酶产生的重要霉菌。分生孢子会给孢子头提供各种黄色至绿色的阴影,并可能形成深色的硬化。nicrium:这是另一个属,在食品中广泛存在且重要。该属分为组和亚组,并且有许多物种。根据孢子头的分支或青霉素(小刷子),将属分为大组。这些头部或verticillata是三个或多个元素的螺旋或簇:sterigmata,metulae(子分支)和分支。P。膨胀,蓝绿色的模具会导致水果的软腐烂。其他重要的物种是Digitatum,带有橄榄或黄绿色的分生孢子,导致柑橘类水果的腐烂; P. Italicum,称为“蓝色接触型”,带有蓝色绿色分生孢子,也称为腐烂的柑橘类水果;
细菌细胞和真菌孢子可以在大气中雾化并悬浮几天,暴露于水的限制,氧化和缺乏营养素。使用比较宏基因组学/metatranscriptomics,我们表明云与20种空气中微生物(包括真菌孢子发芽)的20种代谢功能的激活相关。整个现象反映了通过雨水重新吹干土壤中微生物活性的快速恢复,称为“桦木效应”。云滴中的营养资源不足会导致饥荒,使细胞结构可以减轻。云中微生物的代谢活性恢复可能有利于沉积后的表面侵袭,但在云蒸发后也可能有25次妥协进一步的生存。在任何情况下,云都显示为浮动生物活性水生系统。