图 2 气候数据的主成分分析,在主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B) 下。颜色表示主成分上气候变量坐标的平方和。红色表示高相关性,而蓝色表示低相关性。横轴对应于图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应于图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应于月份(1 表示一月至 12 表示十二月)
图 2 气候数据的主成分分析,在主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B) 下。颜色表示主成分上气候变量坐标的平方和。红色表示高相关性,而蓝色表示低相关性。横轴对应于图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应于图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应于月份(1 表示一月至 12 表示十二月)
图 2 气候数据的主成分分析,在主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B) 下。颜色表示主成分上气候变量坐标的平方和。红色表示高相关性,而蓝色表示低相关性。横轴对应于图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应于图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应于月份(1 表示一月至 12 表示十二月)
图 2 气候数据的主成分分析,主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B)。颜色表示主成分上气候变量坐标的平方和。红色表示高相关性,而蓝色表示低相关性。横轴对应于图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应于图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应于月份(1 表示一月至 12 表示十二月)
图 2 气候数据的主成分分析,在主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B) 下。颜色表示主成分上气候变量坐标的平方和。红色表示高相关性,而蓝色表示低相关性。横轴对应于图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应于图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应于月份(1 表示一月至 12 表示十二月)
位移不是振动的重要特性。振动机械部件将以与扬声器非常相似的方式辐射声音。通常,辐射部件(对应于扬声器的锥体)和其旁边的空气的速度相同,并且,如果从部件前部到后部的距离大于空气中声音波长的一半,则空气中的实际声压将与振动速度成正比。振动表面辐射的声能是速度平方和空气负载的电阻分量的乘积。在这些条件下,特别是在噪声很重要的情况下,最重要的是振动部件的速度而不是其位移。速度是位移随时间的变化率
强烈的Tera-Hertz(Thz)脉冲的最新进展使得可以研究凝结物质中非线性光学现象的低频对应物,通常用可见光研究,因为这是Thz Kerr效应的情况[1-3]。DC Kerr ef-fect检测到与所施加的直流电场平方成正比的等同于各向同性的材料中的双折射,它是对介质的第三阶χ(3)非线性光学响应的标准测量[4]。基本上,AC探头E AC(ω)和直流泵E DC场之间的四波混合导致非线性极化P(3)〜χ(3)E 2 DC E AC(省略了空间索引)。p(3)依次调节ACFILD的相同频率ω的折射率,其空间各向异性由E DC的方向设置。在其光学对应物中,平方ACFER的零频率的光谱成分在DC组件的零频率上起着相同的作用。最近,THZ和光脉冲已在泵探针设置中合并,以测量所谓的Thz Kerr效应[2]。的主要优势比其全光率降级是,强烈的Thz泵脉冲可以通过在相同频率范围内匹配类似拉曼的低覆盖式激发,例如晶格振动[5-8],或者在破碎的态度状态下(对于9-13-13]或超级效果[14] [14] [14],可以强烈增强信号。这种共振反应通常加起来是电子的背景响应,并且可以用来识别不同自由度之间耦合的微观机制。作为一般规则,Thz Kerr响应(将其缩放为THZ电场平方)不受红外活性
痴呆症诊断通常依赖于限制访问早期筛查的昂贵和侵入性神经影像学技术。这项研究提出了一种创新的方法,用于使用可访问的生活方式和脑成像因子估算扩散张量成像(DTI)测量方法来促进早期痴呆症筛查。常规DTI分析虽然有效,但通常会受到高成本和有限的可访问性的阻碍。为了应对这一挑战,模糊的减法聚类确定了14个有影响力的变量,从生活方式中,用于脑健康,脑部萎缩和病变索引框架,包括人口统计学,医疗状况,生活方式因素和结构性脑标记。使用这些选定的变量开发了多层感知器(MLP)神经网络,以预测分数各向异性(FA),这是反映白质完整性和认知功能的DTI度量。MLP模型实现了有希望的结果,在FA预测的测试集中,平均平方误差为0.000 878,证明了其准确的DTI估计潜力,而无需昂贵的神经影像学技术。数据集中的FA值范围为0到1,较高的值表示更大的白质完整性。因此,平均平方误差为0.000 878表明与观察到的FA值相比,模型的预测高度准确。这种多因素方法与当前对痴呆症复杂病因的理解相吻合,受到各种生物学,环境和生活方式因素的影响。通过将随时可用的数据集成到预测模型中,该方法可以为早期痴呆症风险评估进行广泛的,具有成本效益的筛查。建议的无障碍筛查工具可以促进公共卫生计划中的及时干预,预防策略和有效的资源分配,最终改善患者的结果和照料者负担。
M.SC数据科学,计算机科学,孟买大学摘要股票市场预测一直是财务分析师和机器学习从业人员的重大兴趣和研究的主题。本摘要概述了股票市场预测领域中的关键方面和方法。金融市场的不可预测和动态性质为准确的预测带来了挑战。但是,机器学习技术的进步,大规模财务数据的可用性以及计算能力使计算促进了复杂预测模型的发展。在这项工作中,我们研究了各种机器学习算法的应用,包括回归,时间序列模型和支持向量机,以预测股票价格。该研究重点是数据预处理,功能工程和模型评估,以提高预测准确性。使用多样化的数据集评估指标,例如平方误差(MSE),均方根误差(RMSE)和平均绝对百分比误差(MAPE)来衡量模型性能。在承认金融市场的固有不确定性时,这项研究有助于就投资和金融中的数据驱动决策进行更广泛的对话。这项研究的结果提供了对股价预测中机器学习技术的优势和局限性的见解。关键字:机器学习1,线性回归2,投资策略3,金融市场4。1。其固有的波动性和复杂性促使人们追求准确的预测方法来破译其运动。引言股市作为一个动态而复杂的金融生态系统,引起了几代投资者,分析师和研究人员的关注。寻求有效的股票市场预测不仅是一项学术练习;它对财务决策,风险管理和对市场动态的广泛理解具有深远的影响。
自锂离子电池的进步以来,已经大大提高了电池性能,降低成本和能量密度。这些进步加速了电动汽车(EV)的开发。电动汽车的安全性和有效性取决于对锂离子电池健康状况(SOH)的准确测量和预测;但是,这个过程尚不确定。在这项研究中,我们的主要目标是通过减少充电状态(SOC)估计和测量的不确定性来提高SOH估计的准确性。为了实现这一目标,我们提出了一种新型方法,该方法利用基于级的优化器(GBO)评估锂电池的SOH。GBO最小化的成本是为了选择最佳的候选者,以通过mem-ory fading遗忘因素更新SOH。我们评估了我们的方法针对四种鲁棒算法,即颗粒群优化最高方形支持矢量回归(PSO-LSSV),BCRLS-MULTIPEPIPPY加权双重加长扩展Kalman滤波(BCRLS-MWDEKF),总平方(TLS),以及近似加权的总载体(AWTLS)(awtles and ever and Square)(HEF)(ev)ev)(EV)。我们的方法始终优于替代方案,而GBO达到了最低的最大误差。在EV方案中,GBO的最大错误范围从0.65%到1.57%,平均误差范围从0.21%到0.57%。同样,在HEV场景中,GBO的最大错误范围从0.81%到3.21%,平均误差范围从0.39%到1.03%。此外,我们的方法还展示了出色的预测性能,均方根误差(MSE)的值较低(<1.8130e-04),根平方误差(RMSE)(RMSE)(<1.35%)和平均绝对百分比误差(MAPE)(MAPE)(MAPE)(<1.4)(<1.4)。