•[38,23,5,11]使用此想法在各种任务中执行模式识别,包括对癌细胞中核染色质模式的区分,对面部表情,鸟类物种,星系形态的差异的检测,亚细胞形态,亚细胞蛋白质分布,从MI-Collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider的差异。•[31]考虑了该图像产生建模的框架,并通过展示了数字和面部图像的生成建模,在阿尔茨海默氏病神经毒气或甲状腺核图像的背景下进行PET扫描。•[22]遵循这种方法,以改善面部图像的分辨率。在此阶段,从数学角度来看,线性化最佳传输框架的良好实际行为是合理的。嵌入的实际好处是,可以在概率指标的家族中使用经典的希尔伯特统计工具箱,同时保留Wasserstein几何形状的某些特征。嵌入µ 7→t µ的一个特别好的特征是,其在l 2(ρ,r d)中的图像是凸的,即最佳的barycenter
界面裁缝对于钙钛矿太阳能电池(PSC)的效率和稳定性至关重要。报告的界面工程主要集中在能级转弯和陷阱状态钝化上,以改善PSC的光伏性能。在这篇综述中,根据材料界面的电子转移机制的基础进行了分子修饰。对能量水平修改和陷阱钝化的深入分析,以及接口调整中采用的通用密度功能理论(DFT)方法。此外,还讨论了通过界面工程来解决环境保护和大规模迷你模型制造的策略。本评论可以指导研究人员了解界面工程,以设计有效,稳定和环保PSC的接口材料。
摘要:形成稳定的电化学相互作用,包括固体电解质间相(SEI)和阴极电解质相间(CEI)对于开发高性能碱金属电池至关重要。SEI/CEI的稳定性主要取决于其化学和结构。当前对SEI/CEI设计的研究主要集中于通过调节电解质配方来调节其化学。在这项工作中,我们展示了SEI/CEI的化学和结构都可以通过温度调制的形成策略轻松调节。具体而言,使用加热条件下的预充电来调节电解质分解反应的类型和动力学,然后在低温存储下冷冻,以控制电极界面上分解产物的沉积行为。研究表明,高温预充电会影响LI+的配位结构并加速分解反应动力学,从而导致大量阴离子分解。随后的低温存储迅速降低了在高温下产生的分解产物的溶解度,从而促进了两个电极对不溶性产物的沉积,从而导致密集且稳定的SEI/CEI。强大的SEI/CEI实现了中等浓度的基于以太电解质的4.5 V LI || NCM811单元的稳定循环,
混音,或在不记入原始作者的情况下为任何目的调整此材料。公共领域的预印本(未通过同行评审认证)。它不再受版权限制。任何人都可以合法地共享,重复使用,版权所有者将此版本放置在2023年8月5日发布。 https://doi.org/10.1101/2023.07.31.23293462 doi:medrxiv preprint
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2023年3月21日发布。 https://doi.org/10.1101/2023.03.13.13.23287237 doi:medrxiv preprint
神经普通微分方程(神经odes)是一个深层神经网络的新家族。本质上,神经极是一个微分方程,其向量场是神经网络。将神经颂作为机器学习模型的一部分,使该模型比标准模型更有效。的确,可以使用伴随灵敏度方法来训练模型的神经ode块,该方法计算梯度下降方法的梯度,以避免经典的反向传播的计算成本。我们对这一领域的贡献是对神经ode块的稳定性和合同性的研究,是一个微分方程,目的是设计训练策略,以使整体机器学习模型稳健且稳定,以抗对抗攻击。此海报基于[1],[2]和[3]。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
乳腺癌细胞经常在忠实的DNA修复基因中获取突变,例如BRCA降低的效率。此外,不准确的DNA修复途径的过表达也可能是癌症进展过程中遗传不稳定的起源。POLQ表达中的特定增益,编码参与theta介导的末端连接(TMEJ)的易于的DNA聚合酶theta(polθ)与特征突变签名有关。为了深入了解POLQ表达的机械调节,这篇评论介绍了有关Claudin-Low乳腺肿瘤亚型POLQ的调节的最新发现,这些调节特定地表达了参与上皮到 - 质质转变(EMT)(例如Zeb1)和诸如Zeb1和Paimic Abn in paimic abn的上皮性转变(EMT)的转录因子。
K. Anusha 1,R J Anandhi 2,Alok Jain 3,Monica Garg 4,Ali Saeed 5,K.D。Bodha 6* 1印度Telangana海得拉巴MLR理工学院CSE-AI&ML部门。2印度班加罗尔新地平线工程学院信息科学工程系。3印度Phagwara的可爱专业大学。 4劳埃德法学院,地块号 11,知识公园II,大诺伊达,北方邦201312。 5伊斯兰大学伊斯兰大学医学技术学院,伊拉克6 Galgotias工程技术学院,印度大诺伊达,伊斯兰教大学。 摘要。 鉴于当代的社会,生态条件和新颖的风险,需要物理升级和扩大印度不足和负担过负担的电力结构不足和负担过重的电力结构。 ,鉴于客户对增强功率质量的需求增加了,它针对更安全,更灵活和可靠的系统的开发。 本文重点关注新一代智能电网(SG)的特征,重点是高级通信和控制,以创建灵活和自我修复的电源系统。 本文研究了功能,例如故障检测,隔离和功率恢复,以及用于批量传输和分布的复杂QoS。 此处提供的推理为采用动态概率最佳功率流(DSOPF)作为智能电网的重要推动力提供了重大支持。3印度Phagwara的可爱专业大学。4劳埃德法学院,地块号11,知识公园II,大诺伊达,北方邦201312。5伊斯兰大学伊斯兰大学医学技术学院,伊拉克6 Galgotias工程技术学院,印度大诺伊达,伊斯兰教大学。摘要。鉴于当代的社会,生态条件和新颖的风险,需要物理升级和扩大印度不足和负担过负担的电力结构不足和负担过重的电力结构。,鉴于客户对增强功率质量的需求增加了,它针对更安全,更灵活和可靠的系统的开发。本文重点关注新一代智能电网(SG)的特征,重点是高级通信和控制,以创建灵活和自我修复的电源系统。本文研究了功能,例如故障检测,隔离和功率恢复,以及用于批量传输和分布的复杂QoS。此处提供的推理为采用动态概率最佳功率流(DSOPF)作为智能电网的重要推动力提供了重大支持。本文扩展了如何将DSOPF添加到增强的DMS功能可以促进这些设计目标并为渐进的集成电网提供基础。
2025年2月14日,捷克共和国是欧洲最后一个继续安装“智能电表”的国家之一。到2027年,所有消费点每年消耗超过6 MWH(较大的家庭住宅和更高消费的公寓)均应用智能电表代替现有的电表。这些衡量能源消耗的仪表是由电力的分销商拥有和运营的,尤其是Čez在捷克共和国分发,例如,例如,e.gd和Pre Pressute。因此,分销商必须自费进行替换。他们为什么要这样做?它将带来最终消费者的最终作用?功率计的基本智能功能使仪表能够测量和存储消耗历史记录(通常为15分钟的间隔),并且分销商还可以与仪表进行远程通信。除其他外,这无需手动阅读有关消费的信息,以获取计费所需的数据。但是,这不是智能电表的主要原因和好处。越来越多的可再生能源,电池系统和其他重要的电器(例如热泵和电动汽车充电器)逐渐连接到网格。要管理这些网络,分销商不仅需要了解与消费点有关的总消费的信息,而且还需要有关消费历史记录的信息。其他功能包括测量和获取有关电压波形的信息的可能性,可以远程设置消耗限制或远程连接或断开消耗点的能力。此外,智能电表支持“动态关税”,并通过使用继电器切换消耗 - 例如,在加热水(以前称为“夜间电流”)时,阻止了锅炉的电力消耗(“ HDO系统”)。可以看出,智能电表的大多数功能主要为电力分销商服务。他们需要这些功能,以便即使在分散和脱碳的能源系统中也可以安全地管理网络。最终用户的好处是间接的。消费者可以查看自己的消费历史,但是这样的发烧友很少。但是,智能电表是转型能源领域运营的基础:能源市场,具有15分钟的交易期,电力共享,能源社区和灵活性汇总,该公司于去年12月在CZECH RELOSSION的代表众议院批准Lex Oze III批准。具有人工智能的智能电表,全球智能电量表的发展仍在继续,捷克共和国的公司也参与了这些重大的创新。其中一个是技术公司Mycroft Mind,其客户包括捷克共和国的所有主要电力分销商。MyCroft Mind从事智能电网行为的分析和预测。它将人工智能嵌入到电量计中以扩展仪表的功能,以便他们能够预测特定位置的能量的行为,并提供更详细的信息,以使可再生能源更有效地集成到网格中。在分散和脱碳能的环境中可靠,有效地运行的网络根本不是一个小目标。还需要几种类型的技术创新和当前能源部门运营的变化,以实现这一目标。产品开发总监兼Mycroft Mind的联合创始人FilipProcházka