外场的电子屏蔽[1]、拉曼振动[2]和电子传输。[3]然而,在过渡金属二硫属化物 (TMDs) 这一丰富的二维半导体家族中,堆垛序的影响很少被探索,[4,5] 尽管第一性原理计算表明堆垛序驱动价带分裂和激子结合能变化。[6]TMD 拥有许多有趣的量子现象,可用于新型电子器件。[7–9] ReS 2 是 TMD 中的一颗新星,近年来备受关注。ReS 2 具有扭曲的 1T 三斜晶体结构,其中 Re 原子的额外 d 价电子形成与 b 轴平行的锯齿状 Re 链,大大降低了其对称性。尽管自 1997 年起人们就开始研究块体 ReS 2 的性质[10–21],但对二维 ReS 2 的研究直到 2014 年左右才开始兴起。[22] 与其他 TMD 相比,ReS 2 的层间耦合要弱得多。[22] ReS 2 的独特之处在于其面内各向异性性质,这早在 2001 年就已在块体中得到证实。[15] 在二维 ReS 2 中,观察到的性质包括偏振相关的激子[23,24]、非线性吸收[25]、电子传输和 SHG 发射[26,27]等。比较
摘要:我们通过使用依赖偏振的超频率拉曼光谱的纯3R和2H堆叠顺序研究了MOS 2中的层间剪切和呼吸声子模式。我们在MOS 2中最多观察到三层剪切分支和四个呼吸分支,厚度为2至13层。呼吸模式显示出两种多型型的拉曼活性行为,但是2H呼吸频率始终比3R呼吸频率高几个波数,这表明2H MOS 2的层间层间层间lattice晶格偶尔略高于3R MOS 2。相比之下,剪切模式拉曼光谱在2H和3R MOS 2中截然不同。虽然最强的剪切模式对应于2H结构中的最高频率分支,但它对应于3R结构中的最低频率分支。3R和2H多型的如此独特和互补的拉曼光谱使我们能够从最高到最低分支中调查MOS 2中的广泛剪切模式。通过结合线性链模型,群体理论,有效的键极化模型和第一原理计算,我们可以考虑实验中的所有主要观察结果。
价格快速上涨,适量的 SEP 持有者足以使累计许可费接近消费者愿意支付的 v ;这只是数量快速下降的另一面。此外,有点出乎意料的是,均衡个人许可费和 SEP 持有者的利润随着 SEP 持有者数量的增加而下降,因为随着下游均衡价格的上升,需求变得更有弹性,SEP 持有者的定价不再那么激进。事实上,我们表明每个 SEP 持有者收取的个人许可费很快趋于零。最后,随着 SEP 持有者数量的增加,制造商的利润和利润下降,进入的制造商减少,均衡行业集中度上升。最终,当销售额足够小,行业的净收入不足以支付沉没的进入成本时,进入停止,下游行业崩溃。
摘要/工作范围 本文介绍了 Amkor Technology、Panasonic Factory Solutions 和 Spansion 在封装层叠 (PoP) 板级可靠性 (BLR) 领域进行的三方联合研究的结果。[BLR 在行业内也称为二级或焊点可靠性]。虽然 PoP 在手持便携式电子应用中呈指数级增长,但正如 iSuppli [1] 和其他公司所报告的那样,迄今为止,PoP BLR 数据都是针对客户特定的,无法在行业发布。存在大量公司内部和行业数据,可帮助优化 0.5mm 间距、无铅细间距 BGA (FBGA) 或芯片级封装 (CSP) 中的 BLR 性能设计。此外,正如 Scanlan、Syed、Sethuraman 等人 [2] 所报告的那样,0.4mm 间距 CSP 中出现了新的工作。但是,针对从顶部到底部的 PoP - BGA 接口可靠性的行业数据对于设计人员规划新的 PoP 应用或配置至关重要。此外,需要数据来验证当前底部 0.5mm 间距 BGA 到主板接口无铅可靠性性能的最佳实践是否仍然适用于 PoP 堆叠结构。本次合作研究的目标是:• 比较流行的无铅球合金和 BGA 基板焊盘涂层,以确定哪种焊点和 BGA 焊盘涂层结构对 BGA 接口表现出最佳的 BLR 成本/性能平衡。• 建立合作的 PoP 供应链关系,以生成适用的 BLR 数据并使其广泛提供给行业。• 确保生成的 PoP BLR 数据是全面的 - 基于对顶部、底部封装和最终 PWB 组装的大批量设计和可制造性考虑。