由于焊接电流会影响电极烧尽速度、熔合深度和焊件几何形状,因此它是电弧焊工艺中最重要的变量。焊道形状、焊接速度和焊接效率都受电流影响。由于直流电极负极 (DCEN)(正极性)产生更好的效果,因此电极正极 (DCEP) 上的焊接穿透深度和行进速度更大,并且它用于大多数 GTAW 焊接(反极性)。反极性允许电极尖端快速升温并在气体钨中降解。因为阳极比阴极升温更快。气体钨电弧焊中的较高电流会导致飞溅和工件损坏。同样,在气体钨电弧焊中,较低的电流设置会导致填充焊丝粘住。为了沉积等量的填充物,必须长时间施加高温。因此,对于较低的焊接电流,通常会看到更大的热影响区域。在固定电流模式下调整电压以保持电弧电流稳定 [3,4]。与其他焊接工艺相比,我们通常通过钨极惰性气体焊接实现无缺陷接头。让您更好地控制焊接,从而实现更快、更高质量的焊接。另一方面,GTAW 比大多数其他焊接方法复杂得多,难以跟踪,而且速度要慢得多。填充金属通常被使用,但是一些焊接(称为自熔焊或组合焊)不需要它。这种方法提供了竞争方法,例如焊接技术包括屏蔽金属电弧焊和气体金属电弧焊。
内布拉斯加大学林肯分校机械与材料工程系,内布拉斯加州林肯市,美国 通讯作者 – Joseph A. Turner,电子邮件 jaturner@unl.edu。注:Haitham Hadidi 的当前地址是沙特阿拉伯吉赞大学机械工程系,吉赞,吉赞 45142。摘要 金属混合增材制造 (AM) 工艺适合于制造可提高工程性能的复杂结构。混合 AM 可用于制造功能梯度材料,通过完全耦合的制造工艺和/或能源的协同组合,可在整个领域内产生微观结构和材料特性的变化。工程设计和制造空间的这种扩展对无损评估提出了挑战,包括评估无损测量对功能梯度的灵敏度。为了解决这个问题,使用线性超声测量来检测三种制造方法制成的 420 不锈钢试样:锻造、AM 和混合 AM(定向能量沉积 + 激光喷丸)。将波速、衰减和漫反射结果与试样沿构建/轴向的显微硬度测量值进行比较,同时使用微观结构图像进行定性验证。超声波测量结果与破坏性测量结果相得益彰,分辨率没有任何实质性损失。此外,超声波方法被证明可有效识别混合 AM 试样上的弹性特性和微观结构的梯度和循环性质。这些结果突出了超声波作为混合 AM 样品高效且易于获取的无损表征方法的潜力,并为 AM 中的进一步无损评估决策提供信息。
摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
摘要:在增材制造(AM)中,技术和处理参数是确定给定材料样品特征的关键要素。为了区分这些变量的效果,我们使用了具有不同AM技术的相同AISI 316L不锈钢粉末。使用的技术是金属AM中最相关的技术,即具有高功率二极管激光器的直接激光沉积(DLD)和使用新颖的CO 2激光器,具有高功率二极管激光器和选择性激光熔点(SLM),这是一种尚未与此材料一起报道的新技术。所有样品的微观结构均显示出奥氏体和铁素体相,与两个SLM相比,它们对DLD技术更粗糙。纤维激光SLM样品的硬度最大,但其弯曲强度较低。在带有CO 2激光片的SLM中,孔隙率和缺乏熔化会减少断裂应变,但在某些堆积策略下,强度大于激光SLM样品中的强度。使用DLD制造的标本显示出比其余的更高的断裂应变,同时保持高强度值。在所有情况下,都观察到裂纹表面并确定断裂机制。使用归一化参数方法比较了处理条件,该方法也被用来解释观察到的微观结构。
本研究旨在表征采用激光粉末定向能量沉积 (LP-DED) 和激光粉末床熔合 (L-PBF) 制造的 17-4 PH 不锈钢 (SS) 在非热处理和热处理条件下的微观结构和晶体织构。研究发现,非热处理的 LP-DED 17-4 PH SS 具有粗柱状铁素体晶粒,并以魏德曼铁素体晶粒为点缀,而 L-PBF 对应物具有非常细小且大多为等轴的铁素体晶粒以及板条马氏体。根据使用 Thermo-Calc 生成的相图,L-PBF 和 LP-DED 17-4 PH SS 样品获得了相同的应力释放 (SR) 温度。软件。CA-H1025 热处理之前的 SR 步骤导致织构弱化并略微细化了晶粒结构。未经热处理的L-PBF 17-4 PH SS样品具有强的立方体和γ纤维织构,而进行SR-CA-H1025热处理后织构转变为较弱的γ纤维组分。
文件可用性 1996 年 1 月 1 日之后发布的报告通常可通过美国能源部 (DOE) SciTech Connect 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000(1-800-553-6847)TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ 能源部员工、能源部承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 https://www.osti.gov/
沿海核电站的服务水系统使用咸水和经常被污染的水,面临着业内最苛刻的服务环境之一。瑞典公用事业公司 OKG AKTIEBOLAG 在其位于瑞典菲格霍尔姆的奥斯卡港核电站就拥有这种运行环境。服务水系统中使用的咸水和污染的波罗的海水导致原始系统材料大面积腐蚀。自 1978 年以来,材料更换、测试和评估一直在进行,使 OKG 拥有世界上任何核电站中最丰富的 6 Mo 奥氏体不锈钢、钛和其他高性能替代材料运行经验。本案例研究回顾了原始系统材料遇到的问题;替代材料评估程序;以及合金在服务中的实际性能;因此,为具有同样严苛运行环境的公用事业公司提供了宝贵的见解。
沿海核电站的服务水系统使用咸水和经常被污染的水,面临着业内最苛刻的服务环境之一。瑞典公用事业公司 OKG AKTIEBOLAG 在其位于瑞典菲格霍尔姆的奥斯卡港核电站就拥有这种运行环境。服务水系统中使用的咸水和污染的波罗的海水导致原始系统材料大面积腐蚀。自 1978 年以来,材料更换、测试和评估一直在进行,使 OKG 拥有世界上任何核电站中最丰富的 6 Mo 奥氏体不锈钢、钛和其他高性能替代材料运行经验。本案例研究回顾了原始系统材料遇到的问题;替代材料评估程序;以及合金在服务中的实际性能;因此,为具有同样严苛运行环境的公用事业公司提供了宝贵的见解。
在这项研究中,不锈钢316L和Inconel 625合金粉是通过使用定向的能量沉积过程加上制造的。对粘合不锈钢316L/Inconel 625样品的硬度和微观结构的热处理效应。微观结构表明,除了几个小裂缝外,不锈钢316L和Inconel 625之间没有次要相和界面区域附近的大夹杂物。TEM和Vickers硬度的结果表明,界面区域的厚度几十微米。有趣的是,随着热处理温度的升高,不锈钢区域的裂纹不会改变形态,而不锈钢316L的硬度值和Inconel 625的硬度值也下降。这些结果可用于使用定向能量沉积的不锈钢316L材料的表面处理管道和阀门,并通过表面处理材料进行表面处理。关键字:定向能量沉积,界面,物理特性,热处理