耐甲氧西林金黄色葡萄球菌(MRSA)是一种革兰氏阳性的细菌病原体,继续对我们社会中当前的公共卫生系统构成严重威胁。MRSA中对β-内酰胺抗生素的高度抗性归因于青霉素结合蛋白2a(PBP2A)的表达,这会催化细胞壁交联。根据大量研究报告,已知PBP2A蛋白的活性受到与细胞壁交联的活性位点不同的变构位点的调节。在这里,我们对包含1,3,4-氧化唑核的113种化合物进行了筛选,以设计针对PBP2A变构位点的新共价抑制剂并建立其结构活性关系。在初始筛选中鉴定出的磺酰氧化二唑化合物的立体选择性合成导致细胞抑制活性的最大增强。基于基于PEG的药膏的磺酰基黄烷二唑的化合物,对人细胞的毒性测试低(CC 50:>78μm),不仅在小鼠皮肤伤口感染模型中,而且还针对抗氧蛋白抗抗性临床分离型MRSA(IC 50ous)(IC 50oubious),表现出了有效的抗菌作用。此外,利用LC-MS/MS和硅内方法的其他研究清楚地支持了通过亲核芳香族反应(S NAR)反应(S NAR)的变构位点共价结合机制,以及与PBP2A主要活性位点关闭的关联。
蛋白质-蛋白质相互作用 (PPI) 在许多生物过程中发挥着重要作用,是许多人类疾病的潜在治疗靶点。钉合肽作为干扰 PPI 的最有希望的治疗候选物,具有更高的 α-螺旋度、更好的结合亲和力、更耐蛋白酶消化、更长的血清半衰期和增强的细胞通透性,与小分子药物和生物制剂相比表现出更高的药理活性。本文概述了钉合肽的持续进展,主要涉及设计原理、结构稳定性、生物活性、细胞通透性和在治疗中的潜在应用,旨在为设计和探索具有增强的生物学和药代动力学特性的钉合肽作为针对各种疾病的下一代治疗性肽药物提供广泛的参考。
金黄色葡萄球菌是一种突出的人类病原体,具有与参与关键生理途径的宿主蛋白相互作用的显着能力,例如补体系统,凝结级联和纤维蛋白溶解级联。本文探讨了这种著名细菌成功操纵和逃避宿主先天系统的能力,从而揭示了增强其致病性的策略,从而导致对医疗保健系统的影响,例如传播多种医生性医生感染。该研究的重点是金黄色葡萄球菌蛋白,包括凝血酶(COA),von Willebrand因子结合蛋白(VWBP)和葡萄球菌酶(SAK),它们在血液凝结,纤维蛋白溶解,纤维蛋白溶解和逃避宿主抗体抗体抗体抗体抗体抗体抗体中起关键作用。值得注意的是,这些蛋白质有助于形成纤维蛋白网络,保护细菌免受免疫清除率,并在鼠模型中促进致命的血液感染。此外,解决了SAK作为关键毒力因子作用的争论,强调了其对败血症研究中生物膜形成,侵袭内脏的侵袭以及细菌载荷的影响。此外,金黄色葡萄球菌与基质金属蛋白酶的相互作用以及超抗原样蛋白(SSL1和SSL5)的分泌是细菌采用的其他机制来妨碍免疫反应。在解决
新闻发布产品开发产品开发PP土地图的Oerlikon Neumag纤维技术中心的主食纤维纤维到达新质量级别Neumünster(德国),2024年3月14日 - 新的主食纤维技术中心Neumünster-基于Neumünster-neumukon Neumag的新型固定型工厂Neumag的新闻,这是在2022年开放的各个过程中,现在还可以在2022年开放,现在,该公司的持续时间是,现在是在2022年开放的。聚合物。超现代技术中心最初着重于聚酯纤维的进一步开发。针对土工布应用程序的聚丙烯内联测试,在聚丙烯土工杂物应用的内联过程中,具有良好的纤维生产者实现了出色的效果联合测试。延伸率较高。这意味着纤维超过了土工布应用程序中当前建立的参数。“对土工布的需求正在增长,交通量更高,气候极端增加,” Oerlikon Neumag开发负责人Friedrich Lennemann博士说。“我们看到纤维朝着更高的韧性和高伸长率结合在一起的趋势。鉴于取得的结果,我们相信我们的客户有能力通过我们的技术来满足这一趋势。”高科技主食技术中心支持2100平方米的新纤维产品的开发,为所有感兴趣的纤维制造商提供了使用当前的主食技术和工艺。模块化纤维带处理线允许所有组件的可变组合,以便重现相应的过程。广泛的分析选项为进一步发展提供了详细的发现。感兴趣的各方还可以在法兰克福的TechTextil上找到有关产品范围的更多信息,在那里,Oerlikon业务部门人造纤维将在VDMA摊位中代表。
摘要背景:金黄色葡萄球菌(金黄色葡萄球菌)是医院和社区获得感染的常见原因,可能导致各种临床表现,从轻度到重度疾病。细菌利用毒力因子和生物膜形成的不同组合来建立成功的感染,以及甲氧基蛋白和万古霉素抗菌株的出现引入了感染和治疗的其他挑战。摘要:免疫细胞的代谢编程调节分解能量需求的平衡,并决定了抗渗透功能。最近对白细胞和金黄色葡萄球菌在感染过程中的代谢适应的研究表明,代谢串扰在发病机理中起着至关重要的作用。此外,金黄色葡萄球菌可以将其代谢性修改以适应一系列的壁ni,以进行共生或侵入性生长。关键信息:在这里,我们重点介绍了金黄色葡萄球菌感染期间对不明代谢的当前理解,并探讨了宿主和金黄色葡萄球菌影响疾病疾病结果之间的代谢串扰。我们还讨论当无法获得金黄色葡萄球菌的信息时,关键的代谢途径如何影响白细胞对其他细菌病原体的反应。更好地了解S. Aureus和
致病性细菌感染对全球公共卫生构成了重大威胁,这使得快速可靠的检测方法的发展紧急。在这里,我们开发了一种表面增强的拉曼散射(SERS)和比色双模式平台,称为智能手机集成的CRISPR/CAS9介导的侧向流动条(SCC-LFS),并将其应用于葡萄球菌(S. aureus)的超敏感检测。从策略上讲,制备了功能化的银色金纳米纳斯塔尔(Auns@ag),并用作LFS分析的标签材料。在有金黄色葡萄球菌的存在下,可以通过用户定义的CRISPR/CAS9系统准确地识别和解开靶基因诱导的扩增子,从而形成了将许多Aun@Ag绑定到脱带的测试线(T-Line)的中间桥。因此,使用智能手机集成的便携式拉曼光谱仪(Tline)进行了颜色,并获得了可识别的SERS信号。此设计不仅保持视觉读数的简单性,而且还集成了SERS的定量功能,从而使用户能够根据需要灵活地选择测定模式。使用这种方法,可以通过比色模式和SERS模式检测到金黄色葡萄球菌至1 CFU/ML,这比大多数现有方法更好。通过合并快速提取程序,可以在45分钟内完成整个测定法。通过各种真实样品进一步证明了该方法的鲁棒性和实用性,这表明其具有可靠筛选金黄色葡萄球菌的巨大潜力。
细菌持久细胞是高度耐受性抗生素的休眠表型变体的亚群,对感染控制提出了重大挑战。研究抗生素持久性的机制对于制定有效的治疗策略至关重要。在这里,我们发现了耐受性频率与先前感染的牛乳腺炎之间的显着关联。上一个。金黄色葡萄球菌感染导致s。金黄色葡萄球菌耐受性在随后在体内和体外感染中被利福平杀死。实际上,受过训练的免疫的激活导致s的利福平持久性。金黄色葡萄球菌在继发性感染中,降低了抗生素治疗的有效性和疾病严重程度的增加。机械,我们发现S。金黄色的持久性是由受过训练的免疫力引起的富马酸盐的积累来介导的。与二甲双胍和利福平的组合疗法促进了消灭持久性的疗法,并提高了经常性s的严重程度。金黄色葡萄球菌感染。这些发现提供了对训练的免疫与S之间关系的机械洞察力。金黄色的持久性,同时提供概念证明,表明训练的免疫是涉及持续病原体的复发细菌感染中的治疗靶标。
摘要:抗菌耐药性(AMR)的出现,尤其是金黄色葡萄球菌(MRSA),构成了重大的全球健康威胁,因为这些细菌越来越多地抵抗最可用的治疗选择。因此,开发一种有效的方法以直接从临床标本中快速筛选MRSA变得至关重要。在这项研究中,我们建立了一个闭合的管环介导的等热放大(LAMP)方法,该方法融合了羟基荷硫醇蓝(HNB)色染料测定法,以直接根据MECA和SPA基因的存在直接从临床样品中检测MRSA。总共有125个预识别的金黄色葡萄球菌分离株和93个含有金黄色葡萄球菌的临床样品来自哈马德综合医院(HGH)的微生物学实验室。根据常规PCR计算敏感性,特异性,正预测值(PPV)和负预测值(NPV)。该测定法显示了100%特异性,91.23%的敏感性,0.90 Cohen Kappa(CK),100%PPV和87.8%的NPV,而临床分离株则表现出100%特异性,97%的敏感性,926 CK,0.926 CK,100%PPV,和889%NPV。与头孢辛蛋白盘扩散相比,LAMP提供了100%的特异性和敏感性,PPV和NPV的1.00 CK和100%。研究表明,闭合管灯(HNB)染料是一种快速技术,其周转时间小于1小时,并且特异性和灵敏度高。
金黄色葡萄球菌中的染色体突变和靶基因缺失和失活通常使用等位基因交换方法产生。然而,近年来,已经开发出更快速的方法,通常使用基于 CRISPR - Cas9 的系统。在这里,我们描述了最近开发的用于金黄色葡萄球菌的基于 CRISPR - Cas9 的质粒系统,并讨论了它们在靶基因突变和失活中的用途。首先,我们描述如何将 CRISPR - Cas9 反选择策略与重组工程策略相结合以在金黄色葡萄球菌中产生基因缺失。然后我们引入死 Cas9 (dCas9) 和 Cas9 切口酶 (nCas9) 酶,并讨论如何使用与不同核苷脱氨酶融合的 nCas9 酶在靶基因中引入特定的碱基变化。然后,我们讨论如何通过引入提前终止密码子或突变起始密码子,使用 nCas9-脱氨酶融合酶来实现靶向基因失活。这些工具共同凸显了基于 CRISPR - Cas9 的方法在金黄色葡萄球菌基因组编辑中的强大功能和潜力。
1莱布尼兹光子技术研究所(IPHT),莱布尼兹感染研究中心(LPI),07745德国耶拿,德国2号耶拿2感染遗传学研究校园,07743德国耶拿,德国耶拿,3 Hygiene, 1220 Vienna, Austria 5 Institute of Microbiology and Epizootics, Centre for Infection, Medicine School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany 6 Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany 7 Institute of Microbiology, University of Veterinary Medicine, 1210奥地利维也纳; igor.loncaric@vetmeduni.ac.at 8 Poultry Clinics and Laboratory Pöppel, 33129 Delbrück, Germany 9 Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), 75189 Uppsala, Sweden 10 Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), 75007 Uppsala,瑞典11细菌感染和人畜共患病研究所,弗里德里希·洛夫勒·伊斯蒂特(Friedrich-Loeffler-Institut)(联邦动物健康研究所),07743德国耶拿,德国12个物理化学研究所,弗里德里希·史基勒大学,弗里德里希·史基勒大学,德国jena,07743 jena,jena,jena,jena jena,jena jena jena * sosecence:soneceence:Steence:Steence:Steecectect CortezdeJäckel和Helmut Hotzel已退休。