高速宽带分频器广泛应用于正交信号产生[1, 2]、时间交织THA和ADC系统[3, 4, 5]以及其他高速通信领域[6]。目前,已有多种基于不同拓扑和工艺的分频器被报道。特别地,InP DHBT在相同尺寸的器件下具有更高的击穿电压和更好的频率性能[7, 8],这意味着InP DHBT是高速分频器电路的更好选择。但是,电路的工作频率范围不能超过与器件工艺有关的截止频率ft的几分之一[9],这限制了电流型逻辑 (CML) 分频器的工作频率[9, 10]。为了提高分频器电路的高频性能,应努力提高相同ft 的器件的工作频率的利用率。已经发表了许多增强技术来扩展分频器的工作频率范围,例如电感峰值[9, 11, 12, 13],分流电阻负载[14, 15, 16],非对称锁存器[17],动态分频器[18, 19, 20, 21, 22]和双射极跟随器[23, 24]。然而,在电路设计中最大限度地利用器件ft的报道很少。本信
生菜是一种易于生长且营养丰富的多叶蔬菜。它使用静态水培系统生长良好,可节省空间并且易于维护。但是,了解pH对静态水培系统中生菜生长的影响是有限的。因此,进行了这项研究,以确定pH养分溶液对静态水培系统中生长的生长性能和饮食质量的影响。生菜在pH 5.2、6.2和7.2营养溶液中生长。每周收集其生长性能,包括植物高度,根长,叶子数,叶子面积,叶叶绿素含量,总干重和总水分含量。在移植后的第四周之前,分析了收获的生菜,以分析结实,可溶性固体浓度,可滴定酸度,pH和抗坏血酸含量。植物高度,根长,叶子数,叶子面积和生菜的总干重受到养分溶液pH和移植后几周之间相互作用的影响。移植后的第三周,在pH 6.2中生长的生菜比在pH 7.2和5.2营养溶液中分别高出11.12和18.67%。在移植后的第四周之前,pH 6.2中生长的生菜的牢固性明显高于pH 5.2和7.2营养溶液中生长的生菜的牢固性。
碳纤维增强聚合物(CFRP)复合材料由于其出色的强度与重量比,广泛用于工程应用中。这些复合材料受到恒定和可变的各种负载,这使它们容易在结构中损坏积累。这降低了他们的使用寿命并对他们的表现产生负面影响。这项研究研究了使用低周期疲劳(LCF)程序在一个标本和可变载荷的恒定载荷下进行CFRP层压板的故障行为,直到在两种测试中都达到完全失败为止。实验过程涉及使用专门设计的设备,一旦将其牢固地固定到位,就可以通过内部气压施加载荷。根据其最大挠度测量值对标本的观察到的变形进行跟踪。实验结果与理论结果吻合良好。在试样失败时,样品在静态载荷下的最大挠度为(8.975 mm);相比之下,在样品的内部结构逐渐恶化之前,在样品的内部结构逐渐恶化后,试样失败时样品在低周期疲劳下的最大挠度为(12.32 mm)。在低周期疲劳(LCF)测试下,使用扫描电子显微镜(SEM)分析样品。硬度测试是在实验工作之前和之后进行的,以跟踪失败机制,其中包括逐渐的故障阶段。结果和讨论将详细说明材料硬度的明显恶化。实验结果表明,在复合材料的两种测试中,都与理论值和高级见解相吻合。
摘要:叠加磁场影响增材制造金属部件的微观结构和力学性能。本文采用 0.2 T 静态磁场下的定向能量沉积技术制备了 Inconel 718 高温合金样品。提出了磁流体动力学一维模型来估算熔池内的流体流动。根据理论预测,施加磁场会使流体流量略有减少。结果表明,糊状区内估计的热电磁对流对亚晶粒尺寸的变化影响可以忽略不计,但足以减少难以溶解的富 Nb 相,从而将平均极限伸长率从 23% 提高到 27%。所得结果证实,外部静态磁场可以改变和提高增材制造材料的力学性能。
阿尔茨海默氏病(AD)是一种慢性神经退行性疾病,在患者的思维,记忆和行为中引起严重问题。早期诊断对于预言AD进展至关重要;为此,最近有人提出了许多算法来预测认知能力下降。然而,这些预测模型通常无法吸收异质遗传和神经影像标志物,并难以处理丢失的数据。在这项工作中,我们提出了一个新颖的目标函数和相关的优化算法,以鉴定与AD相关的认知下降。我们的AP-PRACH旨在通过参与者特定的增强结合通过回归任务对齐的多模式数据集成来结合动态神经影像学数据。我们的方法为了结合额外的侧面信息,利用了在最近的广告文献中普及的结构化正则化技术。武装着从多模式动态和静态模态中汲取的固定长度矢量反应,常规机器学习方法可用于预测与AD相关的临床结果。我们的实验结果表明,提出的增强模型改善了流行机器学习算法的认知评估评分的预测性能。我们的方法的结果被解释为验证现有的遗传和神经成像生物标志物,这些生物标志物已被证明可以预测认知能力下降。
摘要:耳聋对时间处理可能产生的影响这一问题仍未得到解答。基于行为测量的不同发现显示出相互矛盾的结果。本研究的目的是通过使用功能性近红外光谱 (fNIRS) 技术分析时间估计背后的大脑活动,该技术可以检查额叶、中央和枕叶皮质区域。共招募了 37 名参与者(19 名聋人)。实验任务包括处理道路场景以确定驾驶员是否有时间安全执行驾驶任务,例如超车。道路场景以动画形式呈现,或以 3 张静态图像序列呈现,显示情况的开始、中间点和结束。后一种呈现需要计时机制来估计样本之间的时间以评估车速。结果显示聋人的额叶区域活动更活跃,这表明需要更多的认知努力来处理这些场景。一些研究表明,中脑区域与计时有关,在聋哑人士估计时间流逝时,静态呈现尤其会激活中脑区域。对枕叶区域的探索没有得出任何结论性结论。我们对额叶和中脑区域的研究结果鼓励进一步研究时间处理的神经基础及其与听觉能力的联系。
抽象的抽水储存厂(PSP)被认为是具有低CO 2足迹的批量存储能源最成熟和最可靠的技术。随着可变可再生能源和电源设备的大规模整合,传输系统操作员(TSO)需要更大的灵活性,以确保电能的安全供应。从一家发电公司的角度来看,这代表了收入来源的多元化,因为作为快速频率服务倾向于出现的新市场。,尽管他们可以通过消耗或提供能源来平衡网格功率,但PSP的主要缺点是他们的低时间响应,使他们无法获得这些新的报酬机制。使用电池或超级电容器等技术的技术,使用诸如独立的储能系统(ESS)杂交水力发电厂,以提高PSP的灵活性并解锁提供动态辅助服务的一种考虑的解决方案之一。但是,水电站和环境限制中可用的少量空间可能会使这种解决方案难以访问。传统上,可逆PSP与固定速度机一起使用。静态频率转换器(SFC)通常用于在泵模式下启动组。从这个角度来看,拟议的论文提出了增强静态转换器(E-SFC)的创新概念。它是将ESS直接集成到工厂的SFC中,以使用电源转换器的使用使用。纸张的组织如下。在第3节中,暴露了协同控制方法操作混合动力厂的需求。与与工厂中型电压网格耦合的传统EST相比,它还提供了减少总体资本支出的机会。第1节提出了水力发电厂的灵活性,以适应不断增长的需求和全球新兴的辅助服务。在第2节中,SuperGrid Institute杂交PSP的创新解决方案,并在未来的电力市场中保持了现有的水力发电机队的关键作用。第4节描述了PSP在LOOP(PHIL)测试钻机中实时功率硬件杂交的实验结果。最后,第5节结束并突出了所提出的解决方案的优势。
摘要 - 片上功率电网(PG)的摘要分析至关重要,但由于综合电路(IC)量表的迅速增长,在计算上具有挑战性。当前EDA软件采用的传统数值方法是准确但非常耗时的。为了实现IR滴的快速分析,已经引入了各种机器学习(ML)方法来解决数值方法的效率低下。但是,可解释性或可伸缩性问题一直在限制实际应用。在这项工作中,我们提出了IR融合,该IR融合旨在将数值方法与ML相结合,以实现静态IR滴分析中准确性和效率之间的权衡和互补性。具体而言,数值方法用于获得粗糙的解决方案,并利用ML模型进一步提高准确性。在我们的框架中,应用有效的数值求解器AMG-PCG用于获得粗糙的数值解决方案。然后,基于数值解决方案,采用了代表PG的多层结构的层次数值结构信息的融合,并设计了Inpection unet u-net模型,旨在捕获不同尺度上特征的详细信息和相互作用。为了应对PG设计的局限性和多样性,将增强的课程学习策略应用于培训阶段。对IR融合的评估表明,其准确性明显优于以前的基于ML的方法,同时需要在求解器上迭代较少的迭代才能达到相同的准确性,与数值方法相比。
有机分子与纳米级腔的真空场的强耦合可用于修饰其化学和物理性质。我们扩展了分子集合的Tavis – Cummings模型,并表明,静态偶极矩和偶极子自我能量产生的经常被忽视的相互作用术语对于正确描述了极化化学中的光 - 肌肉交互作用至关重要。在完整的量子描述的基础上,我们模拟了MGH +分子的激发态动力学和光谱,并共偶联与光腔。我们表明,对于获得一致的模型来说,必须包含静态偶极矩和偶极子自我能量。我们构建了一种有效的两级系统方法,该方法重现了真实分子系统的主要特征,可用于模拟较大的分子集合。
软件系统日益复杂,开发周期不断加快,对管理代码错误和实施业务逻辑提出了重大挑战。传统技术虽然是软件质量保证的基石,但在处理复杂的业务逻辑和广泛的代码库方面却存在局限性。为了应对这些挑战,我们引入了智能代码分析代理 (ICAA),这是一个结合了人工智能模型、工程流程设计和传统非人工智能组件的新概念。ICAA 利用 GPT-3 或 GPT-4 等大型语言模型 (LLM) 的功能来自动检测和诊断代码错误和业务逻辑不一致。在对这一概念的探索中,我们观察到错误检测准确率有了显着提高,将误报率从基线的 85% 降低到 66%,召回率有望达到 60.8%。然而,与 LLM 相关的代币消耗成本,尤其是分析每行代码的平均成本,仍然是广泛采用的重要考虑因素。尽管面临这一挑战,但我们的研究结果表明,ICAA 具有巨大的潜力,可以彻底改变软件质量保证,显著提高软件开发过程中错误检测的效率和准确性。我们希望这项开创性的工作能够激发该领域的进一步研究和创新,重点是完善 ICAA 概念并探索降低相关成本的方法。