最近,设计了采用Staudinger连接进行DNA结合的方法。表明,通过合适的接头系统将叠氮化物功能结合可以使染料与单链DNA的5 9端结合。22 Rajski等。使用Staudinger连接将DNA与随后的Cu(i)诱导的链分裂结合DNA。23在这里,我们报告了一种新型叠氮化物修饰的三磷酸核苷的构建块的开发,该块很容易通过DNA聚合酶将DNA掺入DNA中。可以通过Staudinger连接将所得的双链叠氮化物修饰的DNA与改良的磷酸化。在方案1B中描述了通过使用DNA聚合酶进行随后的Staudinger连接的DNA聚合酶对DNA位点特异性的策略。第一步由DNA聚合酶反应组成,其中一种天然的三磷酸核苷(DNTP)被包含叠氮化物功能的修饰类似物取代。显然,此步骤的成功取决于DNA聚合酶接受改性核苷酸的能力。叠氮化物修饰的双链DNA反过来应用作具有适当功能化磷酸的Staudinger连接的底物。
生物正交磷。自那时以来,磷酸探针已被用于标记叠氮化物功能化的生物分子。Staudinger连接还为开发其他基于磷的化学物质的发展铺平了道路,其中许多化学物质广泛用于生物学实验中。几项评论突出了生物正交磷的设计和应用中的早期成就。本评论总结了该领域的最新进展。我们讨论了经典的类似Staudinger的转型的创新,这些转型使新的生物学追求。我们还强调了对生物正交阶段的相对新移民,包括环丙酮 - 磷酸结扎和磷酸磷酸反应。审查以涉及磷酸盐和磷酸盐结扎的化学选择性反应结束。对于每个转换,我们描述了整体机制和范围。我们还展示了为特定功能微调试剂的努力。我们进一步描述了化学物质在生物环境中的最新应用。总的来说,这些例子强调了生物正交膦试剂的多功能性和广度。
前药或可以激活前药的成分,特定于肿瘤。生物正交化学已成为按需前药激活的一种有希望的平台,因为它包括可以在生理条件下进行的化学反应而不会干扰生物学过程。4,5这些反应的选择性,特定城市和相当快的动力学允许精确控制非毒性前药的激活。6 - 8据报道,许多生物正交反应具有很高的选择性前药激活的潜力,例如叠氮化物和三苯基芬丁基之间的Staudinger连接,9和跨环环烯(TCO)和四嗪(TZ)之间的四津连接。10,Staudinger连接主要用于连接应用,因为其动力学相对较慢(K 2〜10-3 m-1 s-1),并且少量报告揭示了其前药激活的潜力。11 - 13在低浓度下,四嗪连接以其快速点击释放反应动力学(K 2〜10 4 m-1 s-1)而闻名,许多报告表明,TZ部分的反应性,
1 约翰内斯古腾堡大学制药和生物医学科学研究所药物生物学系,Staudinger Weg 5, 55128 Mainz,德国;joboulos@uni-mainz.de (JCB);saeedm@uni-mainz.de (MEMS) 2 维尔茨堡大学医院 Mainfranken 综合癌症中心转化肿瘤学,97078 Würzburg,德国;Chatterjee_M@ukw.de 3 约翰内斯古腾堡大学医学中心第三医学系(血液学、肿瘤学和肺病学),55131 Mainz,德国;Yagmur.Buelbuel@sanofi.com (YB);munder@uni-mainz.de (MM) 4 维也纳大学食品化学和毒理学系,Währinger Str. 38, 1090 Wien,奥地利; francesco.crudo@univie.ac.at (FC); doris.marko@univie.ac.at (DM) 5 德国癌症研究中心 (DKFZ)、德国癌症联盟 (DKTK)、国家肿瘤疾病中心 (NCT) 癌症基因组研究部,69120 海德堡,德国;s.klauck@dkfz-heidelberg.de * 通讯地址:efferth@uni-mainz.de;电话/传真:+49-6131-3925-751
一系列弱相互作用。4对于合成聚合物,材料科学自1920年提出的“大分子”概念以来,材料科学已经迅速发展。,由共价键相连的结构单元组成的长链分子。5如今,超过三分之二的商业聚体是半晶体的,例如多核n(po),6个聚甲酸酯(PCL),7聚氨酯(PU),8和聚酰胺(尼龙)9,被广泛地用作商业产品(例如包装和电子材料)和燃料和企业材料(例如诸如包装和电子材料)。聚合物链的各向异性对齐是SCP的基本机制。在无定形的矩阵中,晶体硬结构域作为物理交联位点不仅可以确保尺寸稳定性和溶剂电阻,还可以改善网络韧性,从而有助于独特
1 约翰内斯古腾堡大学制药和生物医学科学研究所药物生物学系,Staudinger Weg 5, 55128 Mainz,德国;joboulos@uni-mainz.de (JCB);saeedm@uni-mainz.de (MEMS) 2 维尔茨堡大学医院 Mainfranken 综合癌症中心转化肿瘤学,97078 Würzburg,德国;Chatterjee_M@ukw.de 3 约翰内斯古腾堡大学医学中心第三医学系(血液学、肿瘤学和肺病学),55131 Mainz,德国;Yagmur.Buelbuel@sanofi.com (YB);munder@uni-mainz.de (MM) 4 维也纳大学食品化学和毒理学系,Währinger Str. 38, 1090 Wien,奥地利; francesco.crudo@univie.ac.at (FC); doris.marko@univie.ac.at (DM) 5 德国癌症研究中心 (DKFZ)、德国癌症联盟 (DKTK)、国家肿瘤疾病中心 (NCT) 癌症基因组研究部,69120 海德堡,德国;s.klauck@dkfz-heidelberg.de * 通讯地址:efferth@uni-mainz.de;电话/传真:+49-6131-3925-751
1 萨拉曼卡大学实验肝病学和药物靶向 (HEVEPHARM) 小组,IBSAL,37007 萨拉曼卡,西班牙; mjmonte@usal.es (MJM); rociorm@usal.es (RIRM); marta.rodriguez@usal.es (MRR); elisah@usal.es (EH); masensio002@usal.es (MA); saraortizriv@usal.es (SO-R.); candelacives@usal.es (CC-L.) 2 Centro de Investigación Biomédica en Red de Enfermedades Hep áticas y Digestivas (CIBERehd),卡洛斯三世国立卫生研究院,28029 马德里,西班牙; jgonga@unileon.es (JG-G.); jl.mauriz@unileon.es (JLM) 3 罗马大学生理学和药理学系“Vittorio Erspamer”,00185 罗马,意大利;silvia.digiacomo@uniroma1.it 4 莱昂大学生物医学研究所(IBIOMED),Vegazana s/n 校区,24071 莱昂,西班牙 5 约翰内斯古腾堡大学制药和生物医学科学研究所药物生物学系,Staudinger Weg 5,55128 美因茨,德国;efferth@uni-mainz.de * 通讯地址:jjgmarin@usal.es (JJGM);obriz@usal.es (OB);电话:+34-663182872 (JJGM);+34-663056225 (OB)
摘要:三氟甲基(–CF 3)组代表药物中高度普遍的功能。在过去的几十年中,在三氟甲基化的合成方法的发展中取得了重大进展。相比之下,目前尚无已知的金属酶可以催化C(SP 3)–CF 3键。在这项工作中,我们证明了一种非血红素铁酶,羟基苯甲酸酯合成酶来自杏仁核东方(aohms),能够从高度碘(III)试剂中产生CF 3的自由基,并指导它们以辅助性烯烃丙烯酸烷烯三氟甲酰胺甲氮化酶。建立了基于Staudinger Liga的高通量筛选(HTS)平台(HTS)平台,从而实现了对这种物质转化的AOHMS变体的快速评估。最终优化的变体接受一系列烯烃底物,产生三氟甲基氮化产物的产物,产量高达73%和96:4对映体比率(E.R.)。生物催化平台可以通过改变碘(III)试剂来进一步扩展到烯烃五氟乙基氮化氮化和重氮化。另外,阴离子竞争实验为这种生物学转变提供了对根本反弹过程的见解。这项研究不仅扩大了金属酶的催化库,以进行根本转化,而且还为有机氟的合成创造了新的酶促空间。
a 神经生物学系,生物研究中心“Sini š a Stankovi ć” - 塞尔维亚共和国国立研究所,贝尔格莱德大学,Bulevar Despota Stefana 142, 11060 贝尔格莱德,塞尔维亚 b 药物生物学系,制药和生物医学科学研究所,约翰内斯古腾堡大学,Staudinger Weg 5, 55128 Mainz,德国 c 化学研究所,塔尔图大学,Ravila 14a,塔尔图 50411,爱沙尼亚 d 实验肿瘤学系,塞尔维亚肿瘤学和放射学研究所,Pasterova 14, 11000 贝尔格莱德,塞尔维亚 e 生物实验室,Antonio González 大学生物有机研究所(IUBO AG),拉古纳大学,Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna,西班牙 f 保加利亚科学院生物物理和生物医学工程研究所,Acad. G. Bonchev Str.,Bl. 105,1113 Sofi,保加利亚 g 威尼斯卡福斯卡里大学分子科学和纳米系统系,301724 Venezia-Mestre,意大利 h 病理学部门,Centro di Riferimento Oncologico di Aviano (CRO) IRCCS,33081 Aviano,意大利 i 锡耶纳大学生命科学系,Via Aldo Moro 2,53100 Siena,意大利 j 塞格德大学医学院医学微生物学和免疫生物学系,H-6720 Szeged,Dóm tér 10,匈牙利
摘要提出了包含6-氯吡啶和尿嘧啶部分的5'-瓜尼迪诺素呋喃糖基核苷的合成和生物学评估,以及3- O-苯苯二甲基硫素糖基单元的合成和生物学评估。它们的访问是基于5-氮杂3- O-苯二苯基二甲苯基乙酸乙酸苯乙酸苯胺丙氨酸酯供体的n-糖基化,并带有硅胶化的核苷酸酶和随后的一柱顺序两步方案,涉及涉及Staudinger涉及的5-氮杂尿液和N 9- n 9- n-N 9-链条n-N 9- n-n-N 9- n-N-N 9-- '-bis(tert-butoxycarbonyl) - n''-triflylguanidine。生物活性筛查显示合成化合物之间表现出的重要活性,即抑制丁乙酸糖酯酶(BCHE)的能力,这是一种治疗症状治疗阿尔茨海默氏病的治疗靶点,是阿尔茨海默氏病的后期阶段,对癌细胞和/或神经保护作用的细胞毒性活性。5'-甘甘尼尼诺6-氯肽核苷被证明是混合型和选择性的亚摩尔或微摩尔或微摩尔BCHE抑制剂,n 9 9核苷是最突出的化合物,具有抑制常数为0.89μm /2.96μm /2.96μmm的抑制常数,显示出抑制作用,并显示出cy的低含量。对人神经母细胞瘤细胞(SH-SY5Y)的显着细胞毒性。此外,N 9连接的核苷表现出对前列腺癌细胞(DU-145,IC 50 =27.63μm)的选择性细胞毒性活性,而其N 7 Regioisomer对所有测试的癌细胞都活跃[DU-145,IC 50 =24.48μm;结直肠腺癌(HCT-15,IC 50 =64.07μm);和乳腺癌