摘要 金属磁记忆法是一种监测钢结构疲劳裂纹的新技术,可通过最大限度地减少检查来降低运营费用并提高安全性。可以通过测量由地球磁场和永久磁化引起的自磁漏通来识别裂纹的几何形状。有限元法可用于模拟裂纹周围的感应磁场,以帮助解释自磁漏通测量,但不清楚应使用哪种材料特性。本研究旨在确定结构钢的磁导率,以便通过有限元法准确模拟裂纹周围的感应磁场。从两块方形钢板上方的测量中提取感应磁场,一块没有缺陷,一块有直缝,并与相对磁导率的有限元结果进行比较。对于两个板,都可以发现均匀的相对磁导率,实验结果和数值结果非常吻合。对于无缺陷且相对磁导率为 350 的板,误差在 20% 以内,并且集中在板的边缘周围。对于有缝隙且相对磁导率为 225 的板,误差在 5% 以内。
材料挤压增材制造 (MEAM) 作为一种现代制造工艺,目前正在吸引各个行业的关注,因为它可以以比其他增材制造工艺更低的成本生产出复杂零件。在本研究中,比较了增材制造和锻造的 17-4PH 不锈钢零件在原始状态和在 H900 条件下热处理的微观结构和力学性能。原始试样由马氏体和 δ-铁素体组成。固溶处理后,δ-铁素体相在马氏体基体中表现出明显的生长。时效处理引起的沉淀强化表现为拉伸强度和硬度的增加。此外,从实验中获得的强度系数 (K) 和应变硬化指数 (n) 被用作拉伸试验模拟的输入数据。所有试样的模拟结果与实验结果一致。模拟结果的发现有望用于预测通过 MEAM 工艺制造的复杂零件的力学行为。关键词:增材制造,材料挤压增材制造,17-4PH不锈钢,热处理,沉淀强化,有限元方法1.引言
摘要:连续冷却转变 (CCT) 图广泛用于钢的热处理,用于表示材料在不同冷却速度下冷却时会出现哪种类型的相。CCT 图是根据对相对较小的测试样品(本研究中为直径为 4mm 和长度为 11mm 的圆柱形)的膨胀测量结果构建的。这项工作的主要目的是证明在确定 CCT 图后使用微体积(一个样品 1.4 × 10 − 7 m 3)的微型拉伸试验评估拉伸试验性能的可能性,并扩展标准 CCT 图以包含有关强度、延展性和加工硬化系数估计值的信息。微型拉伸试验 (MTT) 是最近由于实验材料可用性低而开发出来的,并且已经成功用于金属的局部力学性能表征。绘制了采用激光定向能量沉积 (L-DED) 工艺制备的 42CrMo4 钢、传统制造的市售 42CrMo4 钢(用于比较传统加工和 AM 制备)以及采用选择性激光熔化 (SLM) 工艺沉积的 H13 工具钢的 CCT 图。
沿海核电站的服务水系统使用咸水和经常被污染的水,面临着业内最苛刻的服务环境之一。瑞典公用事业公司 OKG AKTIEBOLAG 在其位于瑞典菲格霍尔姆的奥斯卡港核电站就拥有这种运行环境。服务水系统中使用的咸水和污染的波罗的海水导致原始系统材料大面积腐蚀。自 1978 年以来,材料更换、测试和评估一直在进行,使 OKG 拥有世界上任何核电站中最丰富的 6 Mo 奥氏体不锈钢、钛和其他高性能替代材料运行经验。本案例研究回顾了原始系统材料遇到的问题;替代材料评估程序;以及合金在服务中的实际性能;因此,为具有同样严苛运行环境的公用事业公司提供了宝贵的见解。
在合金的增材制造过程中,在局部热与物质相互作用后,熔融材料会迅速凝固。然后,在剩余的构建时间内,它会在固态下经历冷却/加热循环,即固态热循环。固态热循环期间产生的热机械力可以触发大量微观机制,从而带来显著的微观结构变化,决定最终成品部件的机械性能。在这项工作中,我们的目标是利用透射电子显微镜深入了解固态热循环驱动的奥氏体不锈钢中亚微米级沉淀物的演变。为此,从预制样品中提取薄膜薄片,并在透射电子显微镜内进行不同的原位固态热循环。固态热循环旨在了解温度幅度和速率、热循环次数和类型以及后处理退火对沉淀物演变的影响。每次热循环前后的高角度环形暗场成像和能量色散 X 射线光谱可深入了解不同热循环因素对沉淀物成分、尺寸和形态演变的贡献。常见趋势包括 Mn 和 Si 从富含 Mn-Si 的氧化物扩散到周围基质中,Cr 环在氧化物沉淀物周围形成,S 在非氧化物沉淀物中重新分布。在 (Upadhyay et al., Sci. Rep. 11 (2021) 10393) 中研究的原样样品中也发现了类似的 Cr 环和 S 分布,这有力地支持了这些结果相对于增材制造过程中发生的情况的代表性。
Flore Villaret、Xavier Boulnat、Pascal Aubry、Julien Zollinger、Damien Fabrègue 等人。马氏体钢中 δ 铁素体到奥氏体相变动力学的建模:应用于增材制造中的快速冷却。 Materialia, 2021, 18 (2021) (101157),第18页 (2021)。 “10.1016/j.mtla.2021.101157”。 “cea-03330729”
条越长,电阻越好。表中提到的Vancron和Vanadis Steels是Uddeholm PM SuperCellean Tool Steels。
奥氏体不锈钢的低温渗碳/氮化 – 合金成分对微观结构和性能的影响 Giulio Maistro 工业与材料科学系 查尔姆斯理工大学 摘要 奥氏体不锈钢是食品、制药、化学、石油和天然气工业等重视耐腐蚀性的应用中最常用的材料之一。然而,低硬度和差的摩擦学性能往往是其应用的障碍。传统表面硬化技术,如高温渗碳(T > 850°C)和氮化(T > 550°C)不适用于这些合金。在这种情况下,富铬碳化物/氮化物在晶界处的快速沉淀会导致合金中的铬消耗并损害耐腐蚀性。自 80 年代中期以来,已经开发出用于奥氏体不锈钢表面硬化的低温热化学处理,包括气体渗碳和等离子氮化。这些过程可以诱导形成无沉淀间隙过饱和亚稳态扩展奥氏体(也称为 S 相),具有优异的硬度和改善的耐磨性,同时保持耐腐蚀性。
奥氏体不锈钢 (ASS) 常用于敏感的氢气 (H) 存储、氢气基础设施以及运输应用,因为与铁素体钢相比,它们通常不太容易受到氢脆 (HE) 的影响。这是因为它们的扩散率较低,而氢的溶解度较高 [1-3]。氢脆描述了这样一种现象:材料的机械性能经常会突然发生灾难性的恶化(特别是在受到拉伸载荷时,由于拉伸延展性的丧失),这是由于酸性溶液中的环境氢和含氢气体 [4-8] 扩散到块体材料中造成的。与不易发生 HE 的热力学稳定 ASS(如 AISI 310S 型)相比,在仅含 8 – 10 wt% Ni 的亚稳态 ASS(如 AISI 304 型)中经常观察到严重的 HE,其中在变形过程中会形成应变诱导的 α ′马氏体 [9 – 11]。应变诱导的 α ′马氏体为 H 提供了快速扩散路径,导致 H 在微观结构的关键位置富集(如异质界面前方的微观机械高应力区域),从而导致 H 辅助开裂 [12, 13]。此外,由于凝固过程中的偏析或高冷却速度导致 δ 到 γ 的转变不完全,亚稳态 ASS 中可能会出现少量的 δ 铁素体。这可能会通过提供裂纹起始点来增加样品的 HE 敏感性 [14, 15]。
摘要 提高汽车燃油经济性标准要求开发具有优异机械性能且经济可行的钢板。淬火和分配 (Q&P) 热处理旨在产生富碳的亚稳态奥氏体,该奥氏体在变形过程中转变为马氏体,从而提高强度和延展性。在工业成型操作中,变形温度往往与环境条件不同,应变速率往往超过准静态速率 (>0.001 s -1 )。在本研究中,在 0.0001 至 0.1 s -1 的应变速率下对强度为 980 和 1180 MPa 的 Q&P 钢进行拉伸试验,同时使用热电偶和热成像评估绝热加热。扫描电子显微镜断口分析用于识别延性失效的机制,并用 x 射线衍射测量残余奥氏体以评估奥氏体转变的程度。
