收集和分析与可持续性相关数据的系统和过程可能很复杂。此外,数据本身可能会受到高度估计不确定性的高度,并且需要获得专业知识,并链接到(i),温室气体(GHG)排放测量,野生动植物及其生物多样性以及社会经济学的示例。虽然专业会计师熟悉与其他专家合作,但可持续性报告的引入以及一系列与可持续性有关的主题将会计师置于陡峭的学习曲线中。数据收集过程也可能会造成业务风险,因为它将从许多来源收集,其中一些提供商可能会对释放可能随后对其具有损害影响的数据感到紧张。在这里,将出现以下问题(请参阅第5章)。
1) 检查当天没有进行任何处置活动。根据与现场人员的讨论,CCR 通过端倾倒和散布的方式在垃圾填埋场进行处置,这与前几年检查中观察到的活动一致。卡车使用用 CCR 和碎石灰石建造的通道将 CCR 运送到活跃的填充区域。卡车将 CCR 倾倒在靠近山顶的 CCR 斜坡顶部。然后,前端装载机或推土机将 CCR 推到斜坡上。活跃的处置区域有两个主要的 CCR 斜坡,上坡和下坡。它们之间有一个退让线(照片 1)。斜坡高达约 150 英尺,坡度陡峭,水平 1.25 比垂直 1(1.25H:1V)。根据目前的操作,CCR 放置在下坡的顶部(照片 2)。
随着该地区的发展,需要更多的保留土地来满足开放空间和娱乐需求。该地区地势陡峭,意味着平坦的可用土地供应不足,面临着一系列竞争利益的压力,而且随着城市地区的开发越来越密集,在合适的位置建造新公园变得越来越困难和昂贵。因此,我们现有的公园和开放空间需要适应更密集的使用。总公园供应还需要考虑该地区的大量游客,其中许多人来参加某种形式的户外娱乐活动,以及居民人口的高增长。休闲保留地面临着人口和游客增长的压力。
摘要 - 多个现场机器人的协作对于大规模环境的导航和映射是必需的。在穿越时,考虑到每个机器人性质的遍历性估算对于确保机器人的安全并确保其性能至关重要。即使在结构化的环境中,不考虑地形信息的行驶也可能导致平台严重损坏,例如由于陡峭的斜坡或由于突然的高度变化而导致的下降。为了应对这一挑战,我们提出了Diter ++,多机器人,多主题和多模式数据集,包括地面信息。使用向前的RGB摄像头和面向接地的RGB-D相机,热相机,两种类型的激光镜头,IMU,GPS和机器人运动传感器获得数据集。数据集和补充材料可在https://sites.google.com/view/diter-plusplus/上找到。
飞行管理系统 • 第 2A 阶段引入了双 FMS 安装选项,无需任何额外硬件,支持 – 综合导航数据库 – 图形 INAV 和飞行计划 – 主要和次要飞行计划 - 每个飞行计划 100 个航路点 - 1000 个存储的飞行员定义航路点 - 3000 个存储的飞行计划 – 精密和非精密进近 – SID/STAR 程序 – 广域增强系统 (WAAS) – 全套 RNAV 进近 - RNP - LNAV/VNAV - LNAV - LPV - 大角度进近和着陆 – 垂直下滑道 (VGP) 模式 – 垂直导航 (VNAV) – 直达功能 – 自动航段转换 – 自动倾斜角限制 – 平行偏移 – 天气备用 – 大容量存储模块 – PC 飞行计划工具
e ee ea y ee 自我 啤酒 击败 婴儿 蜜蜂 埃及 爬行 欺骗 肚子 费用 平等 行为 奶油 爸爸 逃跑 甚至 鹿 梦想 小狗 免费 晚上 喂养 恐惧 快乐 李 邪恶 感觉 壮举 山丘 小便 唤起 脚 跳蚤 生气 看到 贪婪 齿轮 木乃伊 树 下面 脚跟 热 尿布 twee 细节 见面 餐 小狗 小猫 针 肉 流鼻涕 耶稣 窥视 豌豆 潮湿 仪表 女王 花生 湿漉漉的 报告 礁石 泥炭 阳光明媚 亮片 种子 恳求 泰迪熊 似乎 阅读 美味 渗透 印章 羊 座位 睡觉 小麦 速度 陡峭 扫掠 青少年 牙齿 杂草 哭泣 轮子
图 3 中反映的跟踪物品数量的急剧增加归因于新的国家、非国家和商业航天器;进入太空的门槛降低;商业公司将数百到数千个航天器组成的大型星座(例如 Starlink);一些重大的碎片产生事件,例如 2007 年中国反卫星 (ASAT) 试验、2009 年铱星-宇宙碰撞和 2021 年俄罗斯反卫星试验,以及改进的监测能力。与此同时,太空环境和自然碎片带来的危害继续威胁着航天器,并有可能产生更多的碎片事件。这些因素综合起来,对于太空作业的安全来说,美国不仅必须知道物体和航天器在任何特定时间的位置,而且还必须知道它们是如何到达那里的、谁拥有它们、它们的潜在能力以及它们的操作员的意图。
摘要 — 展示了 SiC 衬底上的外延 AlN 薄膜体声波谐振器 (FBAR),其一阶厚度扩展模式为 15-17 GHz。对于 15 GHz epi-AlN FBAR,其品质因数 Q max ≈ 443、机电耦合系数 k 2 eff ≈ 2 . 3 % 和 f · Q ≈ 6 . 65 THz 品质因数在 Ku 波段 (12-18 GHz) 中名列前茅。具有高品质因数的干净主模式使此类 epi-AlN FBAR 可用于具有干净频带和陡峭抑制的 Ku 波段声波滤波器。由于这种外延 AlN FBAR 与 AlN/GaN/AlN 量子阱高电子迁移率晶体管 (QW HEMT) 共享相同的 SiC 衬底和外延生长,因此它们非常适合与 HEMT 低噪声放大器 (LNA) 和功率放大器 (PA) 进行单片集成。
