在过去的15年中,为了追求机器学习(ML)的公平性[3]提出了数百种缓解方法。但是,公平性不能简化为一个概念。This diversity stems from the impossibility of reducing fairness to a single concept, and, given a selected fairness definition, from different possible locations of interventions in the model pipeline (pre/in/post-processing) and algorithmic strategies [ 6 ].但是,这种扩散尚不清楚何时,何地和如何适用于实践中。我们建议BIMI板作为任何偏见缓解方法的设计选择的便携式,统一指南。这些数据集[9]和模型卡的数据表[12]。数据表和模型卡关注资源中存在的偏差。bimi板专注于偏置缓解方法的能力来处理某些类型的偏见。图1提供了BIMI纸的示例。表使用标签,可快速概述通常以公平性做出的主要设计选择。每个部分都充满了描述,提供了其他详细信息。板的结构如下:
©世界卫生组织(2024) - 该文件未发给公众,所有权利均由世界卫生组织(WHO)保留。未经世卫组织事先书面许可,不得审查,摘要,引用,复制或翻译该文档。未经世卫组织事先书面许可,本文档的任何部分都不能存储在检索系统中,或以任何形式或任何方式传输。命名作者在文档中表达的观点仅是这些作者的责任。*所提供的PRESTEM被标记为官方词干(“在选择国际非专有物质名称中使用茎”,2024年,ISBN 9-789240-099388)目前,它们可供申请人提供信息和潜在的指导。
©世界卫生组织(2023) - 该文件未发给公众,所有权利由世界卫生组织(WHO)保留。未经世卫组织事先书面许可,不得审查,摘要,引用,复制或翻译该文档。未经世卫组织事先书面许可,本文档的任何部分都不能存储在检索系统中,或以任何形式或任何方式传输。命名作者在文档中表达的观点仅是这些作者的责任。*被标记的PRESTEM可能被标记为官方词干(“在选择国际非专有物质名称中使用词干”,2018年,WHO/emp/emp/rht/tsn/2018.1)。目前,他们可以向申请人提供信息和潜在的指导。
鳄梨 (Persea americana Mill.)是一种具有经济价值的植物,因为其果实脂肪酸含量高且风味独特。其脂肪酸含量,尤其是相对较高的不饱和脂肪酸含量,具有显著的健康益处。我们在此展示了西印度鳄梨的端粒到端粒无缝基因组组装 (841.6 Mb)。基因组包含 40 629 个预测的蛋白质编码基因。重复序列占基因组的 57.9%。值得注意的是,所有端粒、着丝粒和核仁组织区都包含在此基因组中。通过荧光原位杂交观察到这三个区域的片段。我们鉴定出 376 个潜在的抗病性相关核苷酸结合亮氨酸富集重复基因。这些基因通常聚集在染色体上,可能来自基因重复事件。五个 NLR 基因(Pa11g0262、Pa02g4855、Pa07g3139、Pa07g0383 和 Pa02g3196)在叶、茎和果实中高度表达,表明它们可能参与鳄梨在多种组织中的疾病反应。我们还鉴定出 128 个与脂肪酸生物合成相关的基因,并分析了它们在叶、茎和果实中的表达模式。Pa02g0113 编码 11 种介导 C18 不饱和脂肪酸合成的硬脂酰酰基载体蛋白去饱和酶之一,在叶子中的表达量高于在茎和果实中的表达量。这些发现提供了宝贵的见解,增强了我们对鳄梨脂肪酸生物合成的理解。
将袋子放在那个角上,这样蛋白霜就可以从袋子里挤出来。(或者使用糕点袋和 5/8 英寸的尖头。)让您的孩子试着在烤盘的角上点上四颗小蛋白霜珠。在上面放一张羊皮纸。这些珠子将起到将纸固定住的作用。制作蘑菇帽的方法是,将袋子放在羊皮纸上,然后推,直到形成 1 英寸高的蛋白霜堆。间隔 1/2 英寸。制作大约 35-40 个蘑菇帽后,让您的孩子用指尖浸入一小碗水中,轻轻地将所有尖峰弄圆,使表面光滑。在顶部轻轻滤上可可粉。在另一张铺有羊皮纸的烤盘上,在按压蛋白霜的同时将袋子向上拉,将蘑菇茎塑造成大约 3/4 到 1 英寸高。用湿手指轻拍尖峰。烘烤后,这些茎将用融化的巧克力粘在蘑菇帽上。将两块烤盘放入烤箱中烘烤 1 小时,或直到蛋白饼可以轻松提起。关掉火,将烤箱门打开,放在烤箱中烘烤 1 小时或更长时间。额外的时间可以让蛋白饼帽和茎变干。要制作蘑菇,请将巧克力片融化在微波炉安全的盘子中。用小勺将巧克力涂抹在蘑菇帽的底面上。安装茎。让巧克力“胶水”变硬。
水果形状是西瓜的重要特征。以及具有不同果实形状的西瓜的根际和内生微生物的组成也不清楚。分析了为了阐明西瓜水果形成的生物学机制,分析了椭圆形(OW)和西部西瓜(CW)之间的根际和内生微生物群落组成。结果表明,除根际细菌丰富度(p <0.05)外,根际和内生微生物(细菌和乐趣)多样性在OW和CW之间具有统计学意义(p> 0.05)。然而,内生微生物(细菌和真菌)组成显着差异。首先,芽孢杆菌,杜鹃花,cupriamonas和devosia是圆形西瓜(CW)的橄榄球中独特的土壤多元型细菌属。相比之下,Nocardioides,ensifer和saccharomonospora是椭圆形西瓜根际(OW)的根际的特殊土壤主要细菌属。同时,头孢菌,新杂质孢子虫,菲拉斯尼普尔和丘疹是圆形西瓜(CW)的根茎中独特的土壤主要真菌属;相比之下,Acronium,cladosporium,Cryptocococococococococococococuseae,Sodiomyces,Microascus,Conocybe,Sporidiobolus和Acromonium是卵形水甲基(OW)的根茎中独特的土壤主导的真菌属。所有上述结果表明,具有不同果皮形状的西瓜精确地募集了根茎和茎中的各种微生物。Additionally, Lechevalieria , Pseudorhodoferax , Pseudomonas , Massili a, Flavo- bacterium , Aeromicrobium , Stenotrophomonas , Pseudonocardia , Novosphingobium , Melittangium , and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW;相比之下,falsirhodobacter,kocuria和kineosporia是OW茎中的特殊内向属属。此外,lectera和fusarium是CW茎中独特的主导性内生真菌属。相比之下,仅尾孢子是OW茎中的特殊主导性内生真菌属。同时,可以推测不同根磷和内生微生物的富集与西瓜水果形状有关。
虎杖常被错误地称为“假竹”,因此很容易与观赏竹混淆。竹子(Bambusoideae spp.)的茎比较硬,不像虎杖那样容易被折断,叶子非常细长(不同种类和品种之间有所差异,但竹叶通常长达 50 厘米)。田旋花(Convulvulus arvensis)的叶子与虎杖相似,但是它是一种攀缘或蔓生藤本植物,茎细而坚实。本地种山茱萸(Cornus spp.)和引进种丁香(Syringa vulgaris)的叶形与虎杖相似,但是它们的叶子沿着木质茎彼此对生,而虎杖的叶子则是互生的。喜马拉雅虎杖可能会与酸模(Rumex 种类)和其他几种蓼属植物混淆。叶长、叶形、花结构和花色可作为区分特征。
