将材料(通过共价或物理相互作用)加热到与转换域相关的热转变温度T trans (玻璃化转变温度(T g )或熔融转变温度(T m ))以上,并变形成新的形状。将样品冷却到T trans 以下并释放外部应力后,获得临时形状。这种临时形状是稳定的,直到它暴露在热量中并超过转换温度T sw 。如果触发SME,材料将恢复其原始形状。这是一种单向效应,这意味着原始形状不会在冷却时改变。临时形状的固定是由于聚合物网络的网络点(例如半结晶基质内的相变)之外还形成了临时交联。基于该技术,已报道了各种具有复杂功能和能力的材料概念,[2] 例如,在聚(外消旋-丙交酯)-b-聚(环氧丙烷)-b-聚(外消旋-丙交酯)二甲基丙烯酸酯的三嵌段共聚物中,基于聚(外消旋-丙交酯链段)的T g 的经典SME功能可与可降解性相结合。 [3] 除了经典的SME之外,还创建了具有三重或多重形状效应等高级功能的材料。 [1b,4] 与经典SME类似,在三重或多重形状效应聚合物中,临时形状可通过加热逆转。 SME材料在生物医学应用场景中具有巨大潜力,从用于伤口闭合的基于SMP的自紧缝合线到支架或动脉瘤封堵装置。 [5] 由于其改变形状的能力,微创手术的应用场景特别令人感兴趣。 到目前为止,SMP在加热时会变得有弹性。本研究的目的是设计和制造一种与细胞相容的聚合物基网络,该网络具有在组织可耐受的温度范围内的冷却诱导逆 SME (iSME)。对于 iSME,临时形状在材料冷却到 T sw 之前是稳定的。与 SME 类似,iSME 是一次性、单向效应。一旦恢复原始形状,材料就不会再切换回来。即使再次加热,材料仍保持在冷却过程中获得的永久形状。在这方面,iSME 材料不同于软人工肌肉(执行器 [6] ),后者在加热时会失去冷却过程中获得的形状。这种具有 iSME 的生物材料系统的潜在应用有望应用于软组织重建,其中需要以微创方式放置设备。软组织重建面临各种挑战。当前临床上建立的方法基于多种手术
迭代是科学家、工程师和临床医生所熟知的进步之路。在应对 COVID-19 及其引发的病毒时,全世界的人们都站在前排,目睹科学家、工程师和临床医生努力使用迭代科学方法来保护健康人并治疗感染者。公众亲眼目睹的是,科学和医疗保健创新进展缓慢、令人沮丧地间接,最重要的是,这种进步并不总是稳定或向前的。挫折是常见的。科学方法的力量在于,挫折,甚至失败,都不是死胡同——这些结果实际上是帮助解决当前问题的额外知识。一年前,恢复面对面教育和实验室研究遇到了许多挫折,最终我们的母校不得不退后一步,重新开始。今年春天,通过运用从经验中获得的额外知识,一些面对面的教学和实验室指导恢复了,并持续了整个学期。今年秋天,在经历了整整 18 个月的阴性和阳性结果,以及有效的 COVID-19 疫苗的出现和校园接种率高的情况下,我们的母校恢复了全面的面对面教育和实验室研究。我们北卡罗来纳大学/北卡罗来纳州立大学联合生物医学工程系以极大的乐观和热情这样做,因为我们渴望再次全面承担我们的使命,将工程和医学结合起来改善生活。当你继续阅读时,你会发现一些故事表明我们的部门如何以巨大的势头恢复全职面对面的研究和教育。在研究方面,请注意令人兴奋的报告,包括用于血管愈合的外泌体洗脱支架、用于仿生假肢的神经控制技术、3D 打印的基于聚合物的可生物降解植入物药物输送系统、可结合和中和 SARS-CoV-2 从而防止 COVID-19 感染的源自人肺细胞的纳米颗粒、一种新型 3D 牙科 X 射线设备,以及使用纳米液滴和超声波溶解血栓。我们还宣布了来自 NIH、NSF、男性避孕倡议、Eshelman 创新研究所、美国心脏协会和北卡罗来纳州立大学校长创新基金的大量新研究资金。在教育方面,我们自豪地传递了众多 NIH、NSF 和其他研究生奖学金以及来自 NAE Frontiers of Engineering、北卡罗来纳州立大学(年度电子游戏、马修斯奖章、杰出教学奖)、UNC- Chapel Hill(多样性奖、NC TraCS、TARC)、Beckman、国际医学和生物工程学院、国际艾滋病学会、控释学会、生物力学杂志和 Covintus Tech Tank 推介比赛等赞助商的著名学生和教师学术奖项和荣誉!刚刚引用的文章提供了大量有关我们的项目和我们是谁的信息。我鼓励您就这些激动人心的教育和研究机会联系我们,提出问题或意见,因为联合部门正在热情地将这些机会转变为面对面和现场活动!
Cristina Riggio,Gianni Ciofani,Vittoria Raffa,Silvia Bossi,Silvestro Micera和Alfred Cuschieri Scuola Superiore superiore di Studi di Studi e Perfeezionamento e perfezionamento sant'anna sant'anna pisa Italy pisa Pisa Italy 1。简介:纳米医学中的薄聚合物膜一个重要而令人兴奋的纳米医学研究方向是对生物细胞对纳米结构的反应方式有基本的理解。在此目标中,薄膜技术在帮助了解细胞表面相互作用方面起着关键作用。通常,将薄膜沉积在散装材料上,以实现无法实现的特性,或者仅在底物中无法实现。特别是在生物医学中,使用聚合物薄膜,例如涂层以提高生物相容性的特性,从而避免了免疫系统的典型炎症反应,尤其是当必须永久植入该系统时(Jeong等人。,1986)。已经开发了各种可生物降解的聚合物药物输送设备,用于持续释放多种药物,包括微颗粒和纳米颗粒,膜,泡沫,泡沫,晶圆,盘以及微纤维(Jain,2000年),其中,膜在各种应用中都在增长。(Dorta等,2002; Jackson等,2002; Perugini等人,2003年; Dhanikula等。2004;杰克逊等。2004; Grant等,2005; Alexis等。2005; Westedt等人,2006年; Heller等人.1980)。 例如,已经脱闭了用于预防早期和晚期并发症(例如血栓闭合和再狭窄)的胶片,这些并发症已有所有当前的金属支架设备报道。 2006)。2005; Westedt等人,2006年; Heller等人.1980)。例如,已经脱闭了用于预防早期和晚期并发症(例如血栓闭合和再狭窄)的胶片,这些并发症已有所有当前的金属支架设备报道。2006)。(Westedt等人2006;德拉克曼等。 2000; Alexis等人2004,Hanefeld等。 大多数金属的表面是电荷电荷的,因此具有血液源,因为血液元素是负电荷的。 因此,金属支架的缺点鼓励了为探索其他材料作为可能的支架矩阵的巨大努力。 Alexis及其同事研究了两种重要的抗危险药物的体外释放动力学:可生物降解支架矩阵的紫杉醇和雷帕霉素。 鉴于其相对快速的降解率(Alexis等,2006),选择了聚(乳酸 - 乙醇酸)(PLGA)和聚-DL-乳酸酸(PDLLA)。 开发了许多基于聚合物的植入膜制剂,以提供受控的局部释放用于治疗肿瘤的药物(Ho等,2005)。 已经研究了局部给药的化学治疗剂,以治疗各种癌症,例如大脑,前列腺,食管,头颈,卵巢癌和乳腺癌(Jeong等人(Jeong等) ,1986; Webber等。 ,1998; Zhou等,1998;麦卡隆等。 ,2000)。 含有抗癌药的聚合物基于聚合物的装置可以长时间为特定区域提供高剂量的化学疗法(McCarron等人 2000)。 例如,授予和合作者的目标是开发一个交付系统2006;德拉克曼等。2000; Alexis等人2004,Hanefeld等。大多数金属的表面是电荷电荷的,因此具有血液源,因为血液元素是负电荷的。因此,金属支架的缺点鼓励了为探索其他材料作为可能的支架矩阵的巨大努力。Alexis及其同事研究了两种重要的抗危险药物的体外释放动力学:可生物降解支架矩阵的紫杉醇和雷帕霉素。鉴于其相对快速的降解率(Alexis等,2006),选择了聚(乳酸 - 乙醇酸)(PLGA)和聚-DL-乳酸酸(PDLLA)。开发了许多基于聚合物的植入膜制剂,以提供受控的局部释放用于治疗肿瘤的药物(Ho等,2005)。已经研究了局部给药的化学治疗剂,以治疗各种癌症,例如大脑,前列腺,食管,头颈,卵巢癌和乳腺癌(Jeong等人(Jeong等),1986; Webber等。,1998; Zhou等,1998;麦卡隆等。,2000)。含有抗癌药的聚合物基于聚合物的装置可以长时间为特定区域提供高剂量的化学疗法(McCarron等人2000)。例如,授予和合作者的目标是开发一个交付系统
在支架制造过程中,会发生不同类型的废品。本研究探讨了降低支架制造电解抛光过程中废品率的策略。在电解抛光过程中,减少支架制造中的废品对于确保行业的成功和竞争力至关重要。支架制造是医疗器械行业中的关键部门,为心血管疾病患者提供救命的解决方案。电解抛光是增强这些复杂设备表面性能和生物相容性的重要步骤。电解抛光是一种阳极溶解工艺,目前在工业中用于降低金属表面粗糙度以获得明亮光滑的外观 (1)。电解抛光工艺经常遇到挑战,导致废品率高,给制造商带来操作障碍,制造时间几乎没有增加,并且能够生产具有优化拓扑或复杂内部设计的零件,而这在传统制造中是无法实现的 (2)。电解抛光过程中支架的废品可能源于多种因素,包括材料不一致、工艺控制不足和参数配置不理想。每个被拒收的支架不仅会造成经济损失,还会妨碍及时交付和维持产品质量标准。因此,解决电解抛光过程中的拒收率问题对于提高生产效率、降低成本和确保产品质量稳定至关重要。心脏或血管疾病被称为心血管疾病,它们被认为是全世界健康问题和死亡的主要原因。自从进行球囊扩张手术以来,心血管血管成形术一直是冠心病的主要治疗方法。心血管疾病是涉及心脏或血管的疾病,被认为是全世界发病率和死亡率的主要原因 (3)。冠状动脉疾病 (CAD) 的症状是动脉狭窄,由内皮中的斑块引起,由于心肌中的血流和氧气受限,细胞、钙和其他物质可能会在这些沉积物中积聚。这最终可能导致短暂性脑缺血发作和中风。冠状动脉疾病的特征是动脉因内皮下斑块沉积而变窄。细胞、脂肪、钙、细胞碎片和其他物质可能在这些沉积物中积聚,引发一系列事件——血管动脉管腔缩小、血流受限、心肌营养和氧气供应不足——最终可能导致心肌梗死或短暂性脑缺血发作和中风 (4)。本文探讨了支架制造中减少废品的问题,特别关注电解抛光阶段。通过研究当前的做法、分析废品的潜在原因以及探索创新的解决方案,本研究旨在提供有效降低废品率的见解和策略。此外,了解电解抛光过程中废品的潜在机制可以为开发强大的质量控制措施和优化技术铺平道路。
摘要 近几十年来,随着微创技术的发展,新生儿先天性心脏病手术取得了重大进展。这些方法旨在减少手术影响,改善术后恢复,提高患者生存率和生活质量。最常用的技术包括导管插入手术和电视辅助胸腔镜手术,这些技术可以矫正复杂的心脏异常,而无需进行大的胸部切口。这些手术可最大限度地减轻疼痛、降低感染风险并缩短住院时间。临床研究和系统评价表明,微创心脏手术在有效性方面与传统技术相当,并且具有恢复更快、无需长期重症监护等额外优势。混合技术结合了传统手术干预和微创手术,在更复杂的病例中也显示出良好的潜力。另一项重要进步是使用尖端成像技术,例如磁共振成像和三维超声心动图,这使得手术计划更加详细,手术过程更加精确。生物相容性瓣膜和支架等装置的使用也有助于改善手术效果并减少再次干预的需要。此外,专门从事小儿心脏病学的多学科团队的发展也是手术成功的关键因素。外科医生、心脏病专家、麻醉师和护理团队之间的合作可确保更有效、个性化的护理,以满足每位患者的特定需求。总之,新生儿先天性心脏病微创治疗技术的进步代表了心血管医学的重大进步。新技术、创新手术方法和专业团队的结合有助于改善临床结果并从生命第一天起为这些患者提供更好的生活质量。关键词:新生儿心脏外科;微创方法;技术进步。
课程vitae f eb 10,2024 Stefan James教授心脏病学医学科学,乌普萨拉大学高级介入心脏病专家,乌普萨拉大学医院乌普萨拉,瑞典大学毕业副教授/doccent uppsala大学,2006年12月14日,博士学位。乌普萨拉大学医学学院的心脏病学博士学博士学位,2003年5月16日,乌普萨拉大学,220p,1991年6月220日美国杜克医学院杜克临床研究研究所副教授,2009-2010,高级教职员工,Uppsala University,Uppsala Uppsala,Uppsala,2003年9月1日 - 乌普萨拉大学乌普萨拉大学的执行董事,乌普萨拉大学,UPPSALA UPPESALA,乌普萨拉大学,乌普萨拉大学,2022年3月,2022年3月 - 临床临床职位。部门欧洲PCIS登记工作组,主席,2009-2011欧洲心脏病学协会血运重建指南,2008 - 2011年,硕士学位的主要主管Christoph Varenhorst,Dept.心脏病学乌普萨拉大学,乌普萨拉,2005年至2010年AxelÅkerblom,部。心脏病学乌普萨拉大学(Uppsala University),乌普萨拉(Uppsala),2006-2012内科,瑞典莫拉·拉萨雷特(Mora Lasarett),2011年至2015年,丹尼尔·林德霍姆 心脏病学乌普萨拉大学(Uppsala University),乌普萨拉(Uppsala),2012-2015grimfjärd,系 内科医学瓦斯特罗医院,瑞典2015-2020 Konrad Nilsson,部门 (6000名患者)。 (2400名患者)。内科,瑞典莫拉·拉萨雷特(Mora Lasarett),2011年至2015年,丹尼尔·林德霍姆心脏病学乌普萨拉大学(Uppsala University),乌普萨拉(Uppsala),2012-2015grimfjärd,系内科医学瓦斯特罗医院,瑞典2015-2020 Konrad Nilsson,部门(6000名患者)。(2400名患者)。心脏病学Uppsala,2001年9月1日 - 正在进行的专家:董事会专业心脏病学,瑞典卫生与福利委员会,2000年2月1日,2000年2月1日,瑞典卫生与福利委员会董事会专业内科医学,1998年2月1日,1998年2月1日,专业委员会委员会委员会(ESC)COBERICAL SECTICITY委员会(ESC)CO委员会2022-2024 CO委员会2024 CO委员会2024 CO委员会2024 CO委员会2024 CO委员会。 2022-2024指导委员会Euroheart 2020-瑞典心脏病学会,2018-2021总裁,2016-2018 ESC计划委员会2016- 2021 ESC倡导委员会,2016-2018 ESC注册委员会,ESC注册委员 ESC Task force for international guidelines on ST elevation myocardial infarction, Chairman, 2015- 2017 and 2010-12 ESC Task force for evaluation of stents of, 2012-2017 Swedish TAVI registry, steering committee 2011- ongoing European Commission for evaluation of medical devices, European Society of Cardiology 2012-2020 SWEDEHEART registry, steering committee 2009-2017 Swedish coronary and angioplasty register (SCAAR)主席,2008 - 2017年瑞典卫生与福利委员会 - 国家心脏病指南委员会2013-2014。内科医学医院,瑞典2019-2023 Serio buccheri,部心脏病学乌普萨拉大学,乌普萨拉,2018年 - 多中心前瞻性临床试验的持续领导(选择); CAD中的名称(赞助商)Ocean(Amgen)Olpasiran。国际执行委员会成员珊瑚礁(MSD)口服PCSK9抑制高心血管风险的患者(15,000名患者)。中风患者的milevexian(15 000例患者。国际执行委员会成员Librexa Stroke(Jansen)。国际执行委员会成员Dapami(Astra Zeneca)Dapagliflozin在MI患者(4017例)患者中。国际首席研究员迪斯科(Uppsala Univ)。直接用于院外心脏骤停的直接冠状动脉造影(1000例患者)。高级研究员Infinity(Elixir)。dynamx生物加热剂到果汁玛瑙支架。指导委员会太平洋AMI(拜耳)主席。(1600名患者)。国际指导委员会成员糖尿病患者的动脉粥样硬化(Novo Nordisk),100例患者的动脉粥样硬化。国际首席研究员Swedegraft(UCR Uppsala),700名患者。指导委员会主席,2017年 - 全曲面(UCR Uppsala)3400名患者。指导委员会主席,2016年 - Thales试验(Astra Zeneca)13,000名患者。国际执行和指导委员会,2017年 - 双子座,3037名患者。(Janssen Pharma),国际执行和指导委员会,2014-2016