面具以两张塑料片开始。制作口罩的治疗射线照相师会在特殊设计的烤箱中逐个温暖它们,直到它们柔软而柔软。第一张纸在您的头部背面围绕,第二张纸在您的脸上轻轻模制。塑料会很温暖,但是这个过程并不舒服。一个小的塑料矩形将安装在面罩的前面,以便您轻轻地静置牙齿(如上图所示)。这也有助于保持您的静止。
摘要 — 最近的研究表明,设计脑机接口 (BCI) 为神经损伤或疾病患者恢复语音交流大有可为。已经开发出许多 BCI 来从大脑活动中重建语音的不同方面,例如音素和单词。然而,在语音图像期间从大脑活动中成功重建连续语音方面仍然存在许多挑战。在这里,我们研究了使用立体定向脑电图获取的不同频带中的颅内脑活动来区分语音和非语音的潜力。结果显示,在 alpha 和 theta 波段中具有统计学上显着的信息,可用于检测语音活动,并且使用多个频带的组合可以进一步提高性能,准确率超过 92%。此外,该模型是因果关系,可以在未来的闭环实验中以低延迟实现。这些初步发现表明,跨频率脑信号特征可用于检测语音活动以增强语音解码和合成模型。
随着转移性癌症患者的存活率提高,长期对脑转移的局部控制已成为越来越重要的临床优先事项。虽然共识指南建议手术,然后进行> 3 cm病变的立体证明放射外科手术(SRS),但单独使用SRS治疗的较小病变(≤3cm)会引起可变反应。为了确定对SRS变量反应的影响的因素,我们分析了未经框架基于框架单分数SRS治疗的未经全身治疗的患者的脑转移结果≤3cm。SRS之后,1733年中有259个(15%)治疗的病变证明了有关局部治疗失败(LTF)的MRIIFIST,其中202/1733(12%)证明了LTF和54/1733(3%)(3%)具有不良辐射效应。多变量分析表明肿瘤大小(> 1.5 cm)和黑色素瘤组织学与LTF率较高有关。我们的结果表明,≤3cm的脑转移对SRS并不均匀地响应SRS,并表明对单独的SR或与手术结合对脑转移的作用进行了前瞻性研究,并保证与肿瘤大小和组织学相匹配的脑转移量≤3cm。这些研究将有助于建立多学科治疗指南,以改善局部控制,同时最大程度地减少脑转移治疗期间的辐射坏死。
这项研究的目的是将先前描述的立体定向脑活检(SBB)技术,三维头骨轮廓指南(3D-SCG)和Brainsight进行神经量化,与Brainsight的新颖SBB技术相结合,与A 3D Print the Headframe(BS3D-HF)相结合,以改善工作集。这是一种前瞻性方法,与五个不同品种和大小的犬尸体进行了比较。在具有基准标记的尸体上进行了初始螺旋CT。每种方法随机选择了十个不同的目标点。设计和打印了BS3D-HF的头部。轨迹。Steinmann Pins(SP)放入目标点,然后重复CT(CT后)。精度。对于3D-SCG,中值偏差为2.48 mm(0.64–4.04)。有神经元行动,中值偏差为3.28毫米(1.04–4.64)。对于BS3D-HF,中值偏差为14.8毫米(8.87–22.1)。 3D-SCG和中位偏差的神经元行径之间没有显着差异(p = 0.42)。 将BS3D-HF与3D-SCG进行比较时,中位偏差存在显着差异(P <0.0001)。 此外,当将BS3D-HF与神经元动态进行比较时,中位偏差存在显着差异(P <0.0001)。 我们的发现得出的结论是,对于SBB,3D-SCG和神经元驱动都是准确的,但是BS3D-HF不是。对于BS3D-HF,中值偏差为14.8毫米(8.87–22.1)。3D-SCG和中位偏差的神经元行径之间没有显着差异(p = 0.42)。将BS3D-HF与3D-SCG进行比较时,中位偏差存在显着差异(P <0.0001)。此外,当将BS3D-HF与神经元动态进行比较时,中位偏差存在显着差异(P <0.0001)。我们的发现得出的结论是,对于SBB,3D-SCG和神经元驱动都是准确的,但是BS3D-HF不是。尽管可行,但是当前的BS3D-HF技术需要进一步的细化,然后才建议将其用于狗的SBB。
摘要:脑转移 (BM) 是癌症的常见并发症,在现代需要多模式管理方法和多学科护理。传统上,由于细胞毒性化疗的疗效有限,治疗策略仅侧重于局部治疗,例如全脑放射治疗 (WBRT)、立体定向放射外科 (SRS) 和切除术。然而,随着分子疗法的普及,中枢神经系统 (CNS) 渗透性越来越强,现在可以个性化选择量身定制的全身疗法与局部治疗一起使用。此外,具有已证实的 CNS 活性的免疫检查点抑制剂 (ICI) 的引入进一步彻底改变了 BM 患者的管理。然而,这些癌症疗法迅速引入临床实践,导致关于这些全身疗法与 SRS 的最佳时机、顺序和组合的已发表文献严重匮乏。本文回顾了肿瘤生物学和分子特征对 BM 患者治疗模式的影响,并批判性地分析了 SRS 的当前前景,特别关注与全身治疗的结合。我们还讨论了结合 SRS 和 ICI 的新兴治疗策略、这些疗法在 SRS 周围的时间和顺序的影响、皮质类固醇的作用,并回顾了治疗后的影像学发现,包括假性进展和放射性坏死。
目的立体定向引导系统始终保持高精度且使用简单,对于精确的立体定向定位和缩短手术时间至关重要。尽管机器人引导系统被广泛应用,但目前可用的系统还不能完全满足结合无框架手术和机器人技术优势的立体定向引导系统的要求。作者开发并优化了一种小型但高精度的引导系统,该系统的设计使其可以无缝集成到现有的手术室 (OR) 设置中。本临床研究旨在概述这种微型机器人引导系统的开发并介绍作者的临床经验。方法在对机器人立体定向引导系统进行广泛的临床前测试后,对机器人固定、软件可用性、导航集成和末端执行器应用进行了调整。随后,在 2013 年至 2019 年期间的 150 名患者的临床系列中推进了机器人系统的开发,包括 111 次针吸活检、13 次导管置入和 26 次立体脑电图 (SEEG) 电极置入。在临床试验期间,不断进行修改以满足每种适应症的设置要求、技术规格和工作流程。对于每种应用,都会评估特定的设置、工作流程和平均手术准确度。结果在 150 例病例中,149 例可应用微型机器人系统。每个手术中的设置都成功实施,而不会增加大量的手术时间。工作流程无缝集成到现有手术中。在研究过程中,手术准确性得到了提高。对于活检手术,真实目标误差 (RTE) 从平均 1.8 ± 1.03 毫米减少至入口处的 1.6 ± 0.82 毫米 (p = 0.05),从 1.7 ± 1.12 毫米减少至目标处的 1.6 ± 0.72 毫米 (p = 0.04)。对于 SEEG 手术,RTE 从手术前半部分的平均 1.43 ± 0.78 毫米减少至后半部分入口处的 1.12 ± 0.52 毫米 (p = 0.002),从 1.82 ± 1.13 毫米减少至目标处的 1.57 ± 0.98 毫米 (p = 0.069)。所有病例均未观察到愈合并发症或感染。结论 微型机器人引导装置已成功应用于 149 例立体定向手术,证明了其多功能性和无缝集成到现有工作流程的能力。根据这些数据,机器人可以显著提高准确性,而无需增加时间支出。
摘要:脑转移(BM)代表了癌症的常见并发症,在现代时代,需要多模式的管理方法和多学科护理。传统上,由于细胞毒性化学疗法的有效性有限,治疗策略仅关注局部治疗,例如全脑放射疗法(WBRT),立体定向放射外科手术(SRS)和切除。然而,现在,基于中枢神经系统(CNS)渗透的基于分子疗法的可用性允许个性化选择定制的全身疗法与局部疗法一起使用。此外,引入免疫检查点抑制剂(ICIS),具有证明的CNS活性进一步彻底改变了BM患者的管理。将这些癌症治疗剂的迅速引入临床实践中导致了有关这些系统性疗法以及SRS以及SRS的最佳时机,测序和组合的发表文献的显着缺乏。本手稿回顾了BM患者的肿瘤生物学和分子方案对管理范式的影响,并严格分析了SRS的当前景观,并特别关注与全身疗法整合。我们还讨论了结合SRS和ICI的新兴治疗策略,时间的影响以及SR周围这些疗法的测序,皮质类固醇的作用以及审查处理后的成像发现,包括假性预测和辐射坏死。
现代中枢神经系统肿瘤分类结合了遗传和组织学特征,以形成临床相关的综合诊断。1 以前仅根据放射学发现诊断和治疗的弥漫性内在性脑桥神经胶质瘤 (DIPG) 等病变现在可能需要活检才能获得准确诊断并确定临床试验资格。2,3 因此,神经外科医生需要提供安全、微创且经济高效的解决方案来获取适合分子分析的组织。脑干和丘脑等重要部位的病变通常难以通过开放式手术方法进入,需要高精度立体定向工具才能安全地进行活检。基于框架的立体定向历来是成功执行这些程序的黄金标准
抽象目的电极弯曲在立体定向干预后观察到,通常在任何一个计算机辅助计划算法中都不考虑任何一个假定直线轨迹或在质量评估中,仅报告与进入和目标点有关的指标。我们的目的是为预测立体电动摄影(SEEG)电极弯曲的预测提供全自动和验证的管道。方法,我们将86个情况的电极转换为一个公共空间,并比较基于特征和基于图像的神经网络,以回归局部位移(LU)或电极弯曲(ˆ EB)的能力。根据入口和目标点处的大脑结构,将电极分层分为六组。模型,无论有没有蒙特卡洛(MC)辍学,都经过训练并使用十倍的交叉验证进行了验证。结果基于法师的模型OutperformedFeatures基于ModelsForallGroups,Modelsthatpriped Lu执行的better,而不是EB。基于图像的模型预测与MC脱落的模型预测导致较低的平方误差(MSE),而没有辍学的改进高达12.9%(LU)和39.9%(ˆ EB)。与在预测LU时使用T1加权MRI相比,使用脑组织类型(皮层,白色和深灰质)的图像(皮质,白色和深灰质)产生了相似的性能。在推断基于图像的模型(脑组织类型)的轨迹时,有86.9%的轨迹具有MSE≤1mm。结论一种基于图像的方法与其他方法,输入和输出相比,用脑组织类型的图像回归局部位移,从而产生了更准确的电极弯曲预测。未来的工作将调查电极弯曲到计划和质量评估算法的集成。
神经影像学的最新进展使我们更好地了解了人类奖赏系统的功能及其在成瘾患者中的紊乱 [8]。奖赏通路最突出的神经解剖学结构包括前扣带皮层 (AAC)、眶额皮层、腹侧纹状体 (VS) 内的 NAc 和腹侧被盖区 (VTA) [9]。奖赏通路,有时也称为中脑边缘通路,将中脑的 VTA 与前脑基底神经节的 VS 连接起来。从中脑边缘通路释放到 NAc 的多巴胺可调节对奖赏刺激的动机和渴望,并促进强化和与奖赏相关的运动功能学习 [10]。NAc 中中脑边缘通路及其输出神经元的失调在成瘾的发展和维持中起着重要作用 [11]。 NAc 细分为边缘和运动亚区,称为 NAc 外壳和 NAc 核心。NAc 的外壳占据其内侧、腹侧和外侧部分,而核心占据其中央和背部。NAc 中的中棘神经元从 VTA 的多巴胺能神经元和海马、杏仁核和内侧前额叶皮质的谷氨酸能神经元接收输入。当它们被这些输入激活时,中棘神经元的投射会将 GABA 释放到腹侧纹状体上。NAc 位于边缘和中边缘多巴胺能结构、基底神经节和边缘前额叶皮质之间的中心位置。NAc 的这一中心位置影响奖赏相关行为和药物自我给药行为,以及动机、学习和适应性行为 [10, 11]。常见的滥用物质,如可卡因、酒精和尼古丁,已被证明会增加中脑边缘通路内细胞外多巴胺的水平,尤其是 NAc 内的多巴胺水平 [12]。这些中脑边缘通路的多巴胺能激活伴随着奖赏感。这种刺激-奖赏关联表现出对消退的抵抗,并增加了重复导致消退的相同行为的动机。针对中脑边缘系统的神经外科手术已减少或调节 NAc 活动。这些手术包括立体定向消融