I. 一般信息 ▪ 电气工程技术工程师文凭,HTI,塞浦路斯,1979 年。 ▪ 电气工程学士学位,加拿大新不伦瑞克大学,1983 年。 ▪ 生物医学工程硕士学位,美国德克萨斯大学奥斯汀分校,1984 年。 ▪ 神经病学硕士学位,英国纽卡斯尔大学,1991 年。 ▪ 电子工程博士学位,QMW,英国伦敦大学,1992 年。 ▪ 研究兴趣:电子健康、移动医疗、电子应急系统、互联健康;医学图像分析系统:MRI、超声波、内窥镜检查、显微镜检查;医疗系统中的计算智能和可解释人工智能;生物信号分析:肌电图▪ 塞浦路斯大学,计算机科学系,教授,自 2007 年 11 月起,副教授,2001 年 6 月 - 2007 年 10 月,助理教授,1996 年 9 月 - 2001 年 5 月;讲师,1993 年 9 月 - 1996 年 8 月;研究助理,1992 年 9 月 - 1993 年 8 月。▪ 新墨西哥大学,电气和计算机工程系,客座助理教授,2000 年 9 月 - 2001 年 12 月(塞浦路斯大学休假)。▪ 塞浦路斯神经病学和遗传学研究所 (CING),计算智能系,高级科学家 1992 - 2004 年。第一位员工,对研究所的发展和国际声誉发挥了重要作用。自 2017 年起担任董事会成员。 ▪ 1994 年由欧盟颁发的玛丽居里奖学金,主题是组织病理学图像处理。 II. 出版物 ▪ 139 篇期刊出版物;42 篇论文发表在 IEEE Access、TBE、TITB、TMI、TNN、TUFFC、J-BHI、RBME 和 IEEE 杂志上。9 篇论文发表在神经网络、医学成像和电子健康应用特刊上。 ▪ 30 篇图书贡献。 ▪ 书籍去斑点滤波算法和超声成像软件的合著者,Morgan & Claypool Publishers,加利福尼亚州,美国,2008 年和 2015 年第 2 版。 ▪ 《移动医疗:新兴移动医疗系统》一书的联合编辑,Springer,美国,2006 年。《超声和颈动脉分叉动脉粥样硬化》一书的联合编辑,Springer,英国伦敦,2012 年。《心血管超声成像和视频中的斑点滤波和跟踪》手册的联合编辑,工程技术学会 (IET),英国斯蒂夫尼奇,2018 年。电子书《互联健康:现状和趋势》的联合编辑,Frontiers Digital Health,2021 年。▪ 22 个特刊的客座联合编辑,包括 2009 年 IEEE TITB 中的“医疗系统中的计算智能”特刊、2010 年 IEEE TITB 中的“全球医疗环境中以公民为中心的电子健康系统”特刊、2010 年计算机医学成像和图形中的“生物医学图像技术和方法”特刊, 2011 年 IEEE TITB 上的“全球医疗环境中以公民为中心的电子健康系统”主题论文,2012 年 IEEE TITB 上的“心血管健康信息学:风险筛查与干预”主题论文,2016 年《医疗技术快报》中关于移动医疗——新兴移动医疗系统和服务的报道,内容涉及信息学和技术的整合
与其他目前批准的 CD19 靶向 CAR T 细胞疗法相比,其结合动力学不同。AUCATZYL 以三种不同的袋子配置冷冻供应。每种袋子配置包含不同体积的相同药物产品 (DP),其由具有确定密度(每毫升 10 ͯ 10 6 个细胞)的细胞悬浮液组成。AUCATZYL 的推荐剂量是分剂量输注,在第 1 天和第 10 天(± 2 天)给药,总剂量为 410 ͯ 10 6 个 CAR+ 活 T 细胞。AUCATZYL 是由位于英国斯蒂夫尼奇的 Autolus 旗下制造工厂 Nucleus 的自体血液分离材料生成的。AUCATZYL 是通过分离和用 LVV 转导 T 细胞制造的。淋巴细胞清除化疗和 AUCATZYL 输注后,转导的 T 细胞有助于重建患者的 T 细胞库,T 细胞对 CD19 阳性细胞表现出细胞溶解活性。本文件总结了 AUCATZYL 获批的基础。一项单组、开放标签、多中心研究 (FELIX,队列 A) 为治疗 r/r B ALL 成人患者的安全性和有效性提供了主要证据。批准建议基于 AUCATZYL 输注后 3 个月内完全缓解的速度和持续时间。AUCATZYL 的主要风险包括细胞因子释放综合征 (CRS)、免疫效应细胞相关神经毒性综合征 (ICANS)、长期血细胞减少、感染、低丙种球蛋白血症、噬血细胞性淋巴组织细胞增生症/巨噬细胞活化综合征 (HLH/MAS)、超敏反应和继发性恶性肿瘤。 Autolus Inc. 基于一项充分且控制良好的临床试验提供了大量的有效性证据,该试验由 FELIX 研究中其他队列的临床数据、非临床研究和药代动力学 (PK) 研究中的支持。审查小组建议批准此 BLA,其中包含与产品质量相关的九项上市后承诺 (PMC) 和两项上市后要求 (PMR)(一项与儿科研究要求相关,一项与安全性相关)。2. 背景 B 细胞急性淋巴细胞白血病 (B ALL) 是一种严重且危及生命的恶性疾病。其特征是骨髓 (BM) 中的恶性转化和克隆性 B 前体细胞、全血细胞减少以及由此产生的临床并发症,包括感染、出血和贫血。B ALL 最常见于 20 岁以下的患者,发病率在 2 至 5 岁之间达到高峰。50 岁后发病率再次上升。 r/r B ALL 的标准治疗包括化疗、靶向治疗和造血干细胞移植 (HSCT)。靶向治疗包括 1) 针对费城染色体阳性疾病的酪氨酸激酶抑制剂,2) blinatumomab(一种针对 CD19 和 CD3 的双特异性 T 细胞接合抗体),3) inotuzumab ozogamicin(一种针对 CD22 的抗体-药物偶联物),4) tisagenlecleucel 和 bexucabtagene autoleucel(自体 CD19 CAR-T 细胞疗法)。尽管 B ALL 的治疗结果已通过使用
简短的演示和海报1。使用陀螺仪Gyrolab XP系统支持高通量AAV样品测试。夏洛特·科克希尔(Charlotte Corkhill),保罗·杨(Paul Young),英国Pharmaron。2。通量采样表明高抗体产生CHO细胞的代谢特征。Kate Meeson,Jean Marc Schwartz,Magnus Rattray,曼彻斯特大学;英国比林汉姆(Billingham)的富士夫(Fujifilm Diosynth Biotechnologies)Leon Pybus,富士夫。 3。 将行业领先的数据集与基因组规模的代谢模型集成到指导CHO细胞系工程。 Ben Strain,Cleo Kontoravdi,伦敦帝国学院; Holly Corrigall,Pavlos Kotidis,GSK,Stevenage,英国。 4。 绿色藻类衣原体中的叶绿体工程,用于生产新型重组产品。 Luyao Yang,Saul Purton;英国伦敦大学学院。 5。 哺乳动物细胞培养物中乳酸代谢转移的分子驱动因素。 毛罗·托雷斯(Mauro Torres),埃莉·霍克(Ellie Hawke),安德鲁·海斯(Andrew Hayes),艾伦·J·迪克森(Alan J Dickson),曼彻斯特大学; Robyn Hoare,Rachel Scholey,Leon Pybus,Alison Young,Fujifilm Diosynth Biotechnologies,英国Billingham。 6。 使用单个整体可发展性参数合理化mab候选筛选。 Leon F Willis,William Davis Birch,David Westhead,Nikil Kapur,Sheena Radford,David Brockwell,Leeds大学; Isabelle Trayton,Janet Saunders,Maria Bruque,Katie Day,Nicholas Bond,Paul Devine,Christopher Lloyd,Nicholas Darton,Astrazeneca,英国。 7。 用于生物医学应用的磁体鸡尾酒的生物制造和配方。 8。 9。 10。Kate Meeson,Jean Marc Schwartz,Magnus Rattray,曼彻斯特大学;英国比林汉姆(Billingham)的富士夫(Fujifilm Diosynth Biotechnologies)Leon Pybus,富士夫。3。将行业领先的数据集与基因组规模的代谢模型集成到指导CHO细胞系工程。Ben Strain,Cleo Kontoravdi,伦敦帝国学院; Holly Corrigall,Pavlos Kotidis,GSK,Stevenage,英国。 4。 绿色藻类衣原体中的叶绿体工程,用于生产新型重组产品。 Luyao Yang,Saul Purton;英国伦敦大学学院。 5。 哺乳动物细胞培养物中乳酸代谢转移的分子驱动因素。 毛罗·托雷斯(Mauro Torres),埃莉·霍克(Ellie Hawke),安德鲁·海斯(Andrew Hayes),艾伦·J·迪克森(Alan J Dickson),曼彻斯特大学; Robyn Hoare,Rachel Scholey,Leon Pybus,Alison Young,Fujifilm Diosynth Biotechnologies,英国Billingham。 6。 使用单个整体可发展性参数合理化mab候选筛选。 Leon F Willis,William Davis Birch,David Westhead,Nikil Kapur,Sheena Radford,David Brockwell,Leeds大学; Isabelle Trayton,Janet Saunders,Maria Bruque,Katie Day,Nicholas Bond,Paul Devine,Christopher Lloyd,Nicholas Darton,Astrazeneca,英国。 7。 用于生物医学应用的磁体鸡尾酒的生物制造和配方。 8。 9。 10。Ben Strain,Cleo Kontoravdi,伦敦帝国学院; Holly Corrigall,Pavlos Kotidis,GSK,Stevenage,英国。4。绿色藻类衣原体中的叶绿体工程,用于生产新型重组产品。Luyao Yang,Saul Purton;英国伦敦大学学院。 5。 哺乳动物细胞培养物中乳酸代谢转移的分子驱动因素。 毛罗·托雷斯(Mauro Torres),埃莉·霍克(Ellie Hawke),安德鲁·海斯(Andrew Hayes),艾伦·J·迪克森(Alan J Dickson),曼彻斯特大学; Robyn Hoare,Rachel Scholey,Leon Pybus,Alison Young,Fujifilm Diosynth Biotechnologies,英国Billingham。 6。 使用单个整体可发展性参数合理化mab候选筛选。 Leon F Willis,William Davis Birch,David Westhead,Nikil Kapur,Sheena Radford,David Brockwell,Leeds大学; Isabelle Trayton,Janet Saunders,Maria Bruque,Katie Day,Nicholas Bond,Paul Devine,Christopher Lloyd,Nicholas Darton,Astrazeneca,英国。 7。 用于生物医学应用的磁体鸡尾酒的生物制造和配方。 8。 9。 10。Luyao Yang,Saul Purton;英国伦敦大学学院。5。哺乳动物细胞培养物中乳酸代谢转移的分子驱动因素。毛罗·托雷斯(Mauro Torres),埃莉·霍克(Ellie Hawke),安德鲁·海斯(Andrew Hayes),艾伦·J·迪克森(Alan J Dickson),曼彻斯特大学; Robyn Hoare,Rachel Scholey,Leon Pybus,Alison Young,Fujifilm Diosynth Biotechnologies,英国Billingham。6。使用单个整体可发展性参数合理化mab候选筛选。Leon F Willis,William Davis Birch,David Westhead,Nikil Kapur,Sheena Radford,David Brockwell,Leeds大学; Isabelle Trayton,Janet Saunders,Maria Bruque,Katie Day,Nicholas Bond,Paul Devine,Christopher Lloyd,Nicholas Darton,Astrazeneca,英国。 7。 用于生物医学应用的磁体鸡尾酒的生物制造和配方。 8。 9。 10。Leon F Willis,William Davis Birch,David Westhead,Nikil Kapur,Sheena Radford,David Brockwell,Leeds大学; Isabelle Trayton,Janet Saunders,Maria Bruque,Katie Day,Nicholas Bond,Paul Devine,Christopher Lloyd,Nicholas Darton,Astrazeneca,英国。7。用于生物医学应用的磁体鸡尾酒的生物制造和配方。8。9。10。AlfredFernández-Castané,Hong Li,Moritz Ebeler,Matthias Franzreb,Tim W. Overton,Owen R.T.托马斯,阿斯顿大学。 使用Lonza的GS PiggyBac技术开发了高通量DWP的转染平台。 James Harvey,Yukti Kataria,Titash Sen,Lonza,英国。 使用新型差异氟化和19F NMR研究脂多糖与单克隆抗体之间的相互作用。 詹姆斯·贝奇(James Budge),肯特大学。 使用Amperia生成高产生的克隆人群进行IgG滴定分析。 Matthew Reaney,Zeynep Betts,艾伦·迪克森(Alan Dickson),曼彻斯特大学; Jon Dempsey,Pathway Biopharma Ltd. 11. 脂质体过滤污垢的表征:压力变化对无菌过滤性能的影响。 大力神Argyropoulos,Daniel G. Bracewell,Thomas F. Johnson,UCL; Nigel Jackson,Kalliopi Zourna,Cytiva UK。 12。 一种混合化学计量/数据驱动的方法,可改善细胞内通量预测。 Morrissey J,Barberi G,Facco P,Strain B Kintoravdi C,英国伦敦帝国学院。 13。 无细胞的DNA扩增基因组医学 - 课程的马。 Priya Srivastava,Daniel G. Bracewell,生物化学工程系,UCL;约翰·威尔士(John Welsh),英国Cytiva Europe Limited。 14。 合成生物学方法是为AAV CAPSIDS提高有效负载基因组上传的方法。 Tina Chen,Robert Whitfield,Darren Nesbeth,英国伦敦大学学院。 15。 使用Lonza的GS PiggyBac技术开发了高通量DWP的转染平台。AlfredFernández-Castané,Hong Li,Moritz Ebeler,Matthias Franzreb,Tim W. Overton,Owen R.T.托马斯,阿斯顿大学。使用Lonza的GS PiggyBac技术开发了高通量DWP的转染平台。James Harvey,Yukti Kataria,Titash Sen,Lonza,英国。使用新型差异氟化和19F NMR研究脂多糖与单克隆抗体之间的相互作用。詹姆斯·贝奇(James Budge),肯特大学。使用Amperia生成高产生的克隆人群进行IgG滴定分析。Matthew Reaney,Zeynep Betts,艾伦·迪克森(Alan Dickson),曼彻斯特大学; Jon Dempsey,Pathway Biopharma Ltd. 11. 脂质体过滤污垢的表征:压力变化对无菌过滤性能的影响。 大力神Argyropoulos,Daniel G. Bracewell,Thomas F. Johnson,UCL; Nigel Jackson,Kalliopi Zourna,Cytiva UK。 12。 一种混合化学计量/数据驱动的方法,可改善细胞内通量预测。 Morrissey J,Barberi G,Facco P,Strain B Kintoravdi C,英国伦敦帝国学院。 13。 无细胞的DNA扩增基因组医学 - 课程的马。 Priya Srivastava,Daniel G. Bracewell,生物化学工程系,UCL;约翰·威尔士(John Welsh),英国Cytiva Europe Limited。 14。 合成生物学方法是为AAV CAPSIDS提高有效负载基因组上传的方法。 Tina Chen,Robert Whitfield,Darren Nesbeth,英国伦敦大学学院。 15。 使用Lonza的GS PiggyBac技术开发了高通量DWP的转染平台。Matthew Reaney,Zeynep Betts,艾伦·迪克森(Alan Dickson),曼彻斯特大学; Jon Dempsey,Pathway Biopharma Ltd. 11.脂质体过滤污垢的表征:压力变化对无菌过滤性能的影响。大力神Argyropoulos,Daniel G. Bracewell,Thomas F. Johnson,UCL; Nigel Jackson,Kalliopi Zourna,Cytiva UK。12。一种混合化学计量/数据驱动的方法,可改善细胞内通量预测。Morrissey J,Barberi G,Facco P,Strain B Kintoravdi C,英国伦敦帝国学院。 13。 无细胞的DNA扩增基因组医学 - 课程的马。 Priya Srivastava,Daniel G. Bracewell,生物化学工程系,UCL;约翰·威尔士(John Welsh),英国Cytiva Europe Limited。 14。 合成生物学方法是为AAV CAPSIDS提高有效负载基因组上传的方法。 Tina Chen,Robert Whitfield,Darren Nesbeth,英国伦敦大学学院。 15。 使用Lonza的GS PiggyBac技术开发了高通量DWP的转染平台。Morrissey J,Barberi G,Facco P,Strain B Kintoravdi C,英国伦敦帝国学院。13。无细胞的DNA扩增基因组医学 - 课程的马。Priya Srivastava,Daniel G. Bracewell,生物化学工程系,UCL;约翰·威尔士(John Welsh),英国Cytiva Europe Limited。14。合成生物学方法是为AAV CAPSIDS提高有效负载基因组上传的方法。Tina Chen,Robert Whitfield,Darren Nesbeth,英国伦敦大学学院。 15。 使用Lonza的GS PiggyBac技术开发了高通量DWP的转染平台。Tina Chen,Robert Whitfield,Darren Nesbeth,英国伦敦大学学院。15。使用Lonza的GS PiggyBac技术开发了高通量DWP的转染平台。James Harvey,Yukti Kataria,Titash Sen,R&D Lonza Biologics,英国。 div>
MicrofluidX 和 CCRM 合作实现 CAR-T 细胞疗法的端到端生物处理 英国斯蒂夫尼奇和加拿大多伦多,2023 年 1 月 11 日 — MicrofluidX (MFX) 是一家总部位于英国的下一代细胞研究和制造生物反应器供应商,今天宣布与 CCRM 合作,后者是基于再生医学的技术以及细胞和基因疗法的开发和商业化的领导者,通过其下一代平台 Cyto Engine™ 推进慢病毒 (LV) CAR-T 细胞的生产。该项目将满足对更高转导效率、更高转导细胞群体均质性、更短生物处理时间和封闭系统自动化的迫切需求。早期试验(数据可在此处获得)表明,与传统方法相比,MFX 生物反应器中的原代 T 细胞转导效率可提高 5 倍(或病毒消耗量降低 10 倍),均质性提高 2 倍。 “工程慢病毒仍然是 CAR-T 基因编辑最受欢迎的载体,但目前的方法会消耗大量病毒,而细胞产生的载体拷贝数范围很广。这导致人们使用非病毒方法,而这本身也带来了挑战。我们对这次合作感到非常兴奋,因为我们将能够证明事情不必如此。我们平台中的病毒编辑细胞具有高度活力、高度转导和高度同质性,而病毒量仅为以前使用的一小部分,”MicrofluidX 首席执行官 Antoine Espinet 表示。“CCRM 熟练的工艺开发团队一直致力于解决细胞和病毒载体制造中的挑战,包括关闭和自动化流程,我们经常与全球尖端技术提供商合作,”CCRM 总裁兼首席执行官 Michael May 解释道。“与 MicrofluidX 合作的这个项目是一个开发更高效、更低成本的工艺的机会,可以帮助治疗开发人员。当行业能够降低制造成本时,患者将受益。”目前,病毒被设计成载体,将遗传物质带入 T 细胞,增强细胞的特定治疗特性,例如肿瘤检测。然而,这些病毒的生产过程很复杂,因此几微升病毒的成本可能高达数千美元。此外,传统的生物反应器无法精细控制病毒颗粒与细胞的相互作用,导致一部分细胞未受感染,而一部分细胞被多次感染。由于只有受感染的细胞才具有治疗用途,因此需要较长的扩增阶段才能获得可剂量的细胞数量。此外,对重复感染的细胞百分比(载体拷贝数)有严格的放行标准,导致最终产品的产量较低。因此,细胞和基因治疗行业对受控转导平台的需求尚未得到满足,这种平台可以降低病毒消耗,使每个细胞感染率接近一次。此外,对封闭式自动化平台的需求也更为广泛,这种平台可以通过细胞选择、激活、转导、扩增、浓缩和配制,端到端地处理 CAR-T 细胞。MicrofluidX 相信 Cyto Engine™ 平台将满足这些需求,降低细胞治疗制造的成本和时间,并缩短向患者提供救命治疗的时间。通过这个项目,MFX 和 CCRM 将评估 MFX 平台与 CCRM 的流程、员工和设施的能力。反馈将用于进一步改进平台,CCRM 将能够根据其需求设计实验。