针对胰高血糖素样肽-1 受体 (GLP-1R) 治疗糖尿病和肥胖症并非新策略,最近的治疗方法显示出减肥和血糖控制的功效。然而,它们也与副作用有关,包括胃肠道紊乱和胰腺炎。开发具有不同信号传导特性或发挥一定组织选择性的激动剂可以避免这些针对目标的不良影响。受体活性修饰蛋白 (RAMP) 通过调节激动剂结合和信号传导以及表面表达,提供了同时实现这两种功能的潜力。发现 GLP-1R 与 RAMP3 相互作用,异二聚体能够在细胞表面结合激动剂。RAMP3 表达使受体偏向 Ca2+ 动员,远离典型的 cAMP 驱动信号传导。在检查 G 蛋白偶联时,与 RAMP3 的相互作用降低了同源 Gαs 的激活,但增加了与 Gαq 和 Gαi 的二次偶联。当过度表达 RAMP3 的细胞受到 GLP-1 刺激时,这些增加的偶联会导致葡萄糖刺激的胰岛素分泌增加。这种相互作用的影响可以为针对该受体进行治疗干预时选择模型和肽设计提供参考。
通过皮质视觉神经植物对大脑的直接电刺激是一种有前途的方法,可以通过诱导对局部光(称为“磷烯”的局部光)感知来恢复视力障碍的基本视力。除了将复杂的感官信息凝结成低时空和空间分辨率下的有意义的刺激模式外,为大脑提供安全的刺激水平至关重要。我们提出了一个端到端框架,以学习安全生物学约束中最佳刺激参数(振幅,脉冲宽度和频率)。学习的刺激参数将传递给生物学上合理的磷酸模拟器,该模拟器考虑了感知到的磷光的大小,亮度和时间动力学。我们对自然导航视频的实验表明,将刺激参数限制为安全水平不仅可以维持磷光元素的图像重建中的任务性能,而且始终导致更有意义的磷光视觉,同时提供了对最佳刺激参数范围的见解。我们的研究提出了一种刺激生成的编码器,该编码器学习刺激参数(1)满足安全性约束,(2)使用高度实现的磷光模拟器来最大化图像重建和磷光解释性的合并目标,以计算刺激的时间动力学。端到端学习刺激参数以这种方式实现了关键的生物安全限制以及手头硬件的技术限制。
在听觉行为和脑电图实验中,软件和硬件刺激解决方案的多变性增加了不必要的技术限制。目前,还没有一种易于使用、廉价且可共享的解决方案可以改善不同站点和环境中的协作和数据比较。本文概述了一个由 Raspberry Pi 和 Python 编程以及与 HifiBerry 声卡关联的系统。我们将其声音性能与各种材料和配置的声音性能进行了比较。该解决方案实现了听觉认知实验中重要的高时间精度和声音质量,同时易于使用和开源。本系统表现出高性能和结果,并获得了用户的良好反馈。它价格低廉,易于构建、共享和改进。使用这种低成本、功能强大且可协作的硬件和软件工具,人们可以创建自己的特定、适应性强且可共享的系统,该系统可以在不同的协作站点之间标准化,同时使用起来非常简单和强大。
我们最近进行了一项横断面多中心研究,以评估摩洛哥卡萨布兰卡-塞塔特地区适合接受深部脑刺激 (DBS) 的帕金森病 (PD) 患者的患病率。该研究包括来自 15 家公立和私立中心的 370 名患者,研究期为 2023 年 10 月至 2024 年 6 月,为期 9 个月,并获得了卡萨布兰卡医学和药学学院当地伦理委员会的批准(批准号:06/2023)。我们发现,根据德尔菲共识,这些患者中约有五分之一(18.9%;95% 置信区间 14.8–23.0)是 DBS 的明确候选人。1 然而,在我们的样本中,只有一名符合条件的患者接受了这种干预,突显出护理方面存在重大差距。尽管摩洛哥的一些中心已开始实施 DBS,并取得了积极成果(报告的改善率从 50% 到 80% 不等 2),但这些项目仍未得到足够的支持。
国家政策/指南印第安纳州没有肯塔基州为脊髓(仅适用于肯塔基州)植入电气刺激器(仅适用于肯塔基州)路易斯安那州植入脊髓的电刺激器(仅适用于路易斯安那州的新泽西州),新泽西州植入了脊髓的脊髓(仅适用于新墨西哥的新墨西哥植入式电气刺激器(仅适用于新墨西哥)的脊髓(仅)用于脊髓的电刺激器(仅适用于北卡罗来纳州),将电刺激器植入脊髓(仅对于俄亥俄州)(仅适用于俄亥俄州)宾夕法尼亚州植入脊髓的电刺激器,用于脊髓(仅宾夕法尼亚州,仅用于宾夕法尼亚州(仅适用于田纳西州)田纳西州的田纳西州植入电气刺激器,用于刺激器的刺激器(仅用于固定的),刺激范围是刺激范围的散文范围(用于覆盖范围)。根据美国食品和药物管理局(FDA)进行标记为适应症,禁忌症,警告和预防措施的某些情况下的以下条件:
Cécilia Neige、Laetitia Imbert、Maylis Dumas、Anna Athanassi、Marc Thévenet 等。结合呼吸同步嗅觉计和脑刺激研究气味对皮质脊髓兴奋性和有效连接的影响。可视化实验杂志:JoVE,2024,203,�10.3791/65714�。�hal-04758099�
摘要 深部脑刺激 (DBS) 是治疗特发性震颤 (ET) 等运动障碍的成熟方法。患者脑内 DBS 导线的定位对于有效治疗至关重要。术中需要对不同电流幅度下不同位置的刺激的改善和不良影响进行广泛评估。然而,要选择最佳导线位置,必须在脑海中将信息可视化并进行分析。本文介绍了一种称为“刺激图”的新技术,该技术总结并可视化大量相关数据,旨在帮助确定最佳 DBS 导线位置。它结合了三种方法:相关解剖结构的轮廓、定量症状评估和患者特定的电场模拟。通过这种组合,刺激区域中的每个体素都被分配一个症状改善值,从而将刺激区域划分为具有不同改善水平的区域。该技术被回顾性地应用于法国克莱蒙费朗大学医院的五名 ET 患者。除了确定最佳植入位置外,由此得到的九张图还显示,改善程度最高的区域通常位于丘脑后部底区。结果证明了刺激图在确定最佳植入位置方面的实用性。
您正在担任RAAM诊所的顾问。一名新病人弗雷德(Fred)和他的朋友寻求护理,他28岁,已经在庇护所生活了两年。他一直在使用芬太尼,并希望重新启动美沙酮。您对他进行评估并讨论他的选择,他今天开始使用30毫克美沙酮。他的朋友说:“您应该告诉他们去年,您在心理病房里”,他否认了这一点。“是的,他们说我患有精神病,我不记得我很高。我现在还可以”。他现在与他的朋友住在一起,并在评估期间井井有条。您认为他没有精神病的任何症状。他确实报告了他使用甲基苯丙胺,“有时候,当有人拥有它时,这不是一件大事,我不为此付费”。他很乐意重新启动美沙酮,您将他推荐给他在PTSD的RAAM中进行咨询。他想申请住院治疗。
图 1:对特定特征维度的注意力如何塑造神经特征维度图?A. 优先级图理论假设各种“特征维度图”用于根据其首选特征维度内的计算来索引视野中最重要的位置,并且这些图中的激活应根据观察者的目标进行缩放。如果正在进行的任务需要检测或辨别运动(例如,识别飞镖蜂鸟的运动方向),则相应“运动图”内的激活将增加与蜂鸟位置相关的重要性。运动图可以通过两种方式优先考虑超出空间注意力预期的局部效应的信息(例如,Sprague 等人,2018 年)。可以发生局部增强,这样只有具有关注特征的刺激的位置才会被优先考虑。或者,可以发生全局增强,这样整个地图上的激活被附加缩放,从而增加对任何位置关注特征维度的敏感度。这种类型的调制仍会驱动更强的目标表征,但当运动是目标相关特征维度时,还会在没有刺激的位置导致更强的反应。这里描绘了运动维度图,但调制同样适用于其他特征维度,例如颜色。B. 评估特征(运动)图中刺激位置和相反位置的激活可以区分局部和全局增强解释。两种模型都预测,当首选特征维度相关(例如运动;左)时,刺激将在刺激位置具有最大的激活。如果增强是局部的,那么相反位置的激活不应该在各种条件下改变(中间)。但是,如果存在全局增强,那么当运动与任务相关时,相反位置的激活应该增加。通过计算刺激和相反位置之间的激活差异,可以评估基于特征的调制的空间特异性(右)。如果运动图中注意运动条件的激活差异(刺激相反)较大,则增强是局部的。然而,如果关注颜色和运动条件之间的激活差异相似,则增强在特征维度图上是全局的。
在大多数国家 /地区,货币扩张会导致通货膨胀压力,因为它相对于产出增加了需求。中国的当前状况与1990年代的日本有着相似之处,而相反的情况主要发生在信用膨胀的方式上,这促进了经济的供应方面(生产),而不是促进需求方面(消费)。这导致产出增长超过需求增长,导致通货膨胀而不是通货膨胀。在日本,供应方政策无法推动重新平衡和快速增长。日本GDP的消费份额在1991年降低了63.3%(相比之下,中国在2023年为53.4%),消费份额花费了17年,增加了10个百分点。在2008年,它达到了73.8%,仍然落后于全球平均水平。在此期间,日本全球GDP的份额从15%下降到7.9%。