摘要。本研究的目的是基于关于视觉系统对编码视觉刺激的实际脑电图反应的行为和特性的实验研究,开发一种设计 cVEP BCI 刺激序列的新方法,从而减少训练时间并增加可能的目标数量。以每通道 2000 个样本/秒的速度记录来自 8 个枕骨部位的脑电图,以响应以 60Hz 刷新率呈现在计算机显示器上的视觉刺激。通过 160 次试验信号平均获得对长视觉刺激脉冲的起始和终止脑电图反应。这些边缘响应用于使用叠加原理预测对任意刺激序列的脑电图反应。还实现并测试了利用该原理生成的目标模板的 BCI 拼写器。发现,某些短刺激模式可以通过叠加原理准确预测。与将叠加原理应用于传统 m 序列和随机生成的序列相比,由这些最佳模式组合构建的 BCI 序列可实现更高的准确度 (95.9%) 和 ITR (57.2 bpm)。BCI 应用的训练时间仅涉及边缘响应的采集,不到 4 分钟,并且可以生成大量序列。这是首次根据通过观察大脑对几种刺激模式的实际反应而获得的约束来设计 cVEP BCI 序列的研究。
到小波函数。 在这项研究中,使用Daubechies小波函数将EEG信号分为三个频带。 特征由每个分解步骤中的最大值和最小值,标准偏差,平均值,方差,平均功率和熵组成。 对于每个样本,提取了512个功能。 在Alpha,Beta和Gamma频段中,根据没有吸收的最高阈值选择IMF,12。 从这些IMF中提取了76个功能。 在时频域中获得的功能数量到小波函数。在这项研究中,使用Daubechies小波函数将EEG信号分为三个频带。特征由每个分解步骤中的最大值和最小值,标准偏差,平均值,方差,平均功率和熵组成。对于每个样本,提取了512个功能。在Alpha,Beta和Gamma频段中,根据没有吸收的最高阈值选择IMF,12。从这些IMF中提取了76个功能。在时频域中获得的功能数量
摘要 — 本文通过脑机接口 (BCI) 解决了在室内自然环境中人形机器人远程操作的挑战。我们利用基于深度卷积神经网络 (CNN) 的图像和信号理解来促进实时物体检测和基于干脑电图 (EEG) 的人类皮层大脑生物信号解码。我们利用干脑电图技术的最新进展来传输和收集受试者的皮层波形,同时他们注视机器人正在导航的环境直接产生的可变稳态视觉诱发电位 (SSVEP) 刺激。为此,我们建议使用新的可变 BCI 刺激,利用通过机载机器人摄像头传输的实时视频作为 SSVEP 的视觉输入,其中 CNN 检测到的自然场景物体会以不同的频率 (10Hz、12Hz 和 15Hz) 发生改变和闪烁。这些刺激与传统刺激不同,因为闪烁区域的尺寸及其在屏幕上的位置都会根据检测到的场景物体而变化。通过这种基于干脑电图的 SSVEP 方法进行屏幕上的物体选择,有助于通过专门的二级 CNN 将人类皮层大脑信号直接在线解码为遥控机器人命令(接近物体,朝特定方向移动:向右、向左或向后)。该 SSVEP 解码模型是通过先验离线实验数据进行训练的,其中所有受试者的视觉输入都非常相似。在跨多个测试对象的实时机器人导航实验中,最终的分类表现出高性能,平均准确率为 85%。
在整个设计过程中,设计师会遇到影响其工作的各种刺激。这种影响在创意生成过程中尤为明显,因为新颖的设计支持工具可帮助发现灵感。然而,关于这些工具提供的交互为何以及如何影响设计行为,仍然存在一些基本问题。这项工作探讨了设计师如何使用支持文本和非文本输入查询的人工智能多模式搜索平台来搜索灵感刺激。学生和专业设计师完成了一项有声思考的设计探索任务,使用该平台寻找激发创意的刺激。我们将专业知识和搜索方式确定为影响设计探索的因素,包括搜索的频率和框架,以及搜索结果的评估和实用性。2023 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
虚拟现实环境为研究脑机接口 (BCI) 在现实环境中的性能提供了绝佳的机会。由于现实世界的刺激通常是多模态的,它们的神经元整合会引发复杂的反应模式。为了研究额外的听觉提示对视觉信息处理的影响,我们使用虚拟现实来模拟工业环境中的安全相关事件,同时记录脑电图 (EEG) 信号。我们模拟了一个在传送带系统上移动的盒子,其中两种类型的刺激(爆炸和燃烧的盒子)会中断正常操作。来自 16 名受试者的记录分为两个子集,一个是纯视觉实验,另一个是视听实验。在纯视觉实验中,两种刺激的反应模式引发了类似的模式——视觉诱发电位 (VEP),然后是枕叶-顶叶上的事件相关电位 (ERP)。此外,我们发现感知到的事件严重程度反映在信号幅度中。有趣的是,额外的听觉提示对先前的发现产生了双重影响:在爆炸盒刺激的情况下,P1 成分被显著抑制,而燃烧盒刺激下 N2c 则有所增强。这一结果凸显了多感官整合对现实 BCI 应用性能的影响。事实上,我们观察到基于混合特征提取(方差、功率谱密度和离散小波变换)和支持向量机分类器的检测任务的离线分类准确度发生了变化。在爆炸的情况下,与仅视觉实验相比,视听实验的准确度略有下降,为 -1.64%。相反,当存在额外的听觉提示时,燃烧盒的分类准确度增加了 5.58%。因此,我们得出结论,特别是在具有挑战性的检测任务中,当 BCI 应该在(多模态)真实世界条件下运行时,考虑多感官整合的潜力是有利的。
大脑计算机界面(BCI)系统为严重运动残疾患者提供了替代通信通道,可以使用无肌肉运动与环境互动。近年来,与最经常研究的基于BCI的拼写范式相比,对非目光依赖的脑部计算机界面范式的研究的重要性一直在增加。在RCP范式下已经验证了用于通信目的的几种视觉修改尚未在最扩展的非目光依赖的快速串行视觉呈现(RSVP)范式下进行验证。因此,在本研究中,根据RSVP评估了三组不同的刺激,并具有以下交流特征:白色字母(WL),著名面部(FF),中性图片(NP)。11个健康受试者参加了该实验,其中受试者必须经历校准阶段,在线阶段以及最终的主观问卷完成阶段。结果表明,FF和NP刺激在校准和在线阶段促进了更好的性能,在FF范式中稍好。关于主观问卷,与WL刺激相反,参与者再次首选FF和NP,但这次NP刺激得分略高。这些发现表明,与最常用的基于字母的刺激相比,将FF和NP用于基于RSVP的拼写器可能是有益的,可以提高信息传输速率,并且可以代表具有改变眼运动功能的个人的有希望的通信系统。
本文讨论了一种完全可定制的板载芯片 (COB) LED 设计,可同时诱发两种大脑反应(稳态视觉诱发电位 (SSVEP) 和瞬态诱发电位 P300)。考虑到脑机接口 (BCI) 中可能的不同模式,SSVEP 被广泛接受,因为它需要的脑电图 (EEG) 电极数量较少且训练时间最短。这项工作的目的是制作一个混合 BCI 硬件平台,以精确诱发 SSVEP 和 P300,同时减少疲劳并提高分类性能。该系统包括四个独立的径向绿色视觉刺激,由 32 位微控制器平台单独控制以诱发 SSVEP,以及四个以随机间隔闪烁以生成 P300 事件的红色 LED。该系统还可以记录可用于分类的 P300 事件时间戳,以提高准确性和可靠性。通过控制乐高机器人向四个方向移动,测试了混合刺激的实时分类准确性。2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
在预能动作的背景下有效的抑制性控制至关重要。但是,这种行动抑制可能会受到情感状态的深刻影响。有趣的是,研究表明,情绪刺激可以损害或改善动作控制。因此,大量的混乱围绕着我们对复杂动态的知识来缩减情感和动作控制。在这里,我们旨在调查负面刺激即使无意识地提出和任务 - 毫无疑问,也可能影响相对于中性刺激的动作控制。此外,我们测试了皮质内兴奋性的个体差异是否可以预测动作控制能力。为了解决这些问题,我们要求参与者完成停止信号任务(SST)的修改版本,其中在GO信号作为素数之前,将恐惧或中性的刺激呈现。此外,我们评估了参与者的静止状态皮质脊髓兴奋性,较短的心脏抑制(SICI)和心脏内促进(ICF)。结果表明,当恐惧刺激被过度地呈现时,表现出更好的动作控制能力,并且个体间的SICI预测了更强的作用抑制能力。综上所述,这些结果对动作,意识和运动控制之间的复杂动力学有了新的启示,这表明心脏内测量可以用作潜在的研究和临床环境中运动抑制的潜在生物标志物。
如图 1 所示,感知脑解码 (PBD) 是一种利用不同刺激引起的大脑反应来辨别原始感知刺激(例如视觉或听觉线索)或其某些特征的方法。通常,PBD 在认知和临床两个方面都具有优势。通过 PBD,可以仔细研究与外部刺激相对应的不同大脑活动模式。在临床环境中,大脑解码技术可以用于与患有闭锁综合症或瘫痪等疾病(这些疾病可能会损害运动和发声功能)的个体进行交流。在这种情况下,可以尝试在提供感知刺激的同时重建个体的反应或想象。此外,改进的感知脑解码方法可以用于记忆检索或可视化思维等应用,从而有助于认知研究和康复工作。
近年来,开发支持人工智能设计的工具和辅助工具已成为热门话题。谷歌为从业者制定了人工智能指南 [26];Amershi 等人。[3] 制定了 18 条人机交互指南;Corbett 等人。[15] 提出“交互式机器学习启发式评估”;周等人。[74] 提出了一种称为材料生命周期思维 (MLT) 的设计方法,该方法将 ML 视为具有整个生命周期的设计材料。然而,这些方法主要在开发过程的后期阶段有用。在早期概念设计阶段,缺乏支持人工智能驱动的用户体验设计的工具,从业者在理解人工智能能力和为给定的用户体验问题设想新的人工智能解决方案方面面临挑战 [72]。构思决定了设计的类型,在新颖概念的开发和商业成功中发挥着重要作用 [30]。然而,很少有研究支持从业者在概念设计阶段为人工智能领域生成新颖和多样化的概念。