在这项工作中,我们基于电信O波段中发出的Ingaas量子点(QD)开发和研究单光子源。量子设备是使用原位电子束光刻制造的,结合了热压缩键合,以实现背面金镜。我们的结构基于INGAAS/GAAS异质结构,其中QD发射通过减少应变层在1.3 L m处向电信O带红移。QD通过阴极发光映射预选的QD嵌入带有背面金镜的台面结构中,以提高光子萃取效率。在脉冲非共振润湿层激发下进行的光子自动相关测量在高达40 K的温度下进行,显示纯单光子发射,这使得设备使用Stirling Croimoolers兼容独立操作。使用脉冲P-shell激发,我们实现了单光子的发射,高光子抑制G(2)(0)¼0.0276 0.005,是(12 6 4)%(12 6 4)%(12 6 4)%的AS测量的(96 6 6 10)%和(96 6 10)%和相关的连接时间(212 6 25)的可见性(12 6 4)%。此外,结构显示出5%的提取效率,这与该光子结构的数值模拟所期望的值相当。我们设备的进一步改进将通过光纤维实现量子通信。
摘要:提出了高浓度的高温光束向下太阳能点浓缩器,与热能储能耦合,并在24小时内发动了完全调度的电力。在最大太阳能收集月份,在最大太阳能收集月份,允许使用标称功率的全24小时操作,全部功率生产限制为17.06 h。每月平均容量因子振荡为71和100%,平均为87.5%。多亏了电加热器的热量储存流动,该系统可以接受从电网中接受过多的电力,以补偿每隔一个月收集一次的太阳能的损失,而不是在最佳夏季月份收集的太阳能,以每天每天24小时以额定功率运行。在这种情况下,容量因素每月可以达到100%。通过进一步增加热能存储的尺寸和发动机的功率,可以增强系统的热量能量存储能力,从而增加了可以从网格中收集的电力量,以便在需要时返回。
摘要。量子点红外光电探测器(QDIP)定位成为红外(IR)检测领域的重要技术,尤其是对于高温,低成本,高产,高收益检测器阵列所需的军事应用所需的技术。高操作温度(≥150k)光电探测器通过启用低温露水和斯特林冷却系统的成本降低了红外成像系统的成本,并被热电冷却器代替。QDIP非常适合在升高温度下检测中期光,该应用可能被证明是下一个量子点的商业市场。虽然量子点外延的生长和IR辐射的标记内吸收良好,但量子点非均匀性仍然是一个重大挑战。在150 K处的最新IR检测,而QDIP焦平面阵列的性能与77 K的HGCDTE相当可比。带隙工程以减少深色电流并增强多光谱检测(例如共鸣隧道QDIP),QDIP的性能和适用性将继续提高。
Buckden 218 Buckden Silver Street 以东和 A1 以南 219 Buckden Luck's Lane 221 Fenstanton 223 Fenstanton 前 Dairy Crest 工厂 224 Fenstanton Cambridge Road West 226 Fenstanton Cambridge Road East 228 Kimbolton 230 Kimbolton Station Road 以西 231 Kimbolton Station Road/ Stowe Road 以北 233 Bicton 工业区以南 234 Sawtry 235 Sawtry Glebe Farm 以东 236 Sawtry Gidding Road 以南 238 Somersham 240 Somersham Newlands 工业区以西的 College Farm 241 Somersham Newlands St Ives Road 243 Somersham The Pasture 245 Somersham Town Football Ground 246 Somersham Bank 以北 248 Warboys 250拉姆齐路以西,沃博伊斯 251 庄园农场建筑,沃博伊斯 253 斯特林巷以南,沃博伊斯 255 法里尔路以南,沃博伊斯 257 车站路以西延伸段,沃博伊斯 259 亚克斯利 261 阿斯库巷,亚克斯利 262 亚克斯帕克,亚克斯利 264
13 个主要服务中心 218 Buckden 218 Buckden Silver Street 以东和 A1 以南 219 Buckden Luck's Lane 221 Fenstanton 223 Fenstanton 前 Dairy Crest 工厂 224 Fenstanton Cambridge Road West 226 Fenstanton Cambridge Road East 228 Kimbolton 230 Kimbolton Station Road 以西 231 Kimbolton Station Road/ Stowe Road 以北 233 Bicton 工业区以南 234 Sawtry 235 Sawtry Glebe Farm 以东 236 Sawtry Gidding Road 以南 238 Somersham 240 Somersham Newlands 工业区以西 College Farm 241 Somersham Newlands St Ives Road 243 Somersham The Pasture 245 Somersham Town Football Ground 246 Somersham Bank 以北248 沃博伊斯 250 拉姆齐路以西,沃博伊斯 251 庄园农场建筑,沃博伊斯 253 斯特林巷以南,沃博伊斯 255 法里尔路以南,沃博伊斯 257 车站路以西延伸,沃博伊斯 259 亚克斯利 261 阿斯库巷,亚克斯利 262 亚克斯帕克,亚克斯利 264
13 个主要服务中心 218 Buckden 218 Buckden Silver Street 以东和 A1 以南 219 Buckden Luck's Lane 221 Fenstanton 223 Fenstanton 前 Dairy Crest 工厂 224 Fenstanton Cambridge Road West 226 Fenstanton Cambridge Road East 228 Kimbolton 230 Kimbolton Station Road 以西 231 Kimbolton Station Road/ Stowe Road 以北 233 Bicton 工业区以南 234 Sawtry 235 Sawtry Glebe Farm 以东 236 Sawtry Gidding Road 以南 238 Somersham 240 Somersham Newlands 工业区以西 College Farm 241 Somersham Newlands St Ives Road 243 Somersham The Pasture 245 Somersham Town Football Ground 246 Somersham Bank 以北248 沃博伊斯 250 拉姆齐路以西,沃博伊斯 251 庄园农场建筑,沃博伊斯 253 斯特林巷以南,沃博伊斯 255 法里尔路以南,沃博伊斯 257 车站路以西延伸,沃博伊斯 259 亚克斯利 261 阿斯库巷,亚克斯利 262 亚克斯帕克,亚克斯利 264
13 个主要服务中心 218 Buckden 218 Buckden Silver Street 以东和 A1 以南 219 Buckden Luck's Lane 221 Fenstanton 223 Fenstanton 前 Dairy Crest 工厂 224 Fenstanton Cambridge Road West 226 Fenstanton Cambridge Road East 228 Kimbolton 230 Kimbolton Station Road 以西 231 Kimbolton Station Road/ Stowe Road 以北 233 Bicton 工业区以南 234 Sawtry 235 Sawtry Glebe Farm 以东 236 Sawtry Gidding Road 以南 238 Somersham 240 Somersham Newlands 工业区以西 College Farm 241 Somersham Newlands St Ives Road 243 Somersham The Pasture 245 Somersham Town Football Ground 246 Somersham Bank 以北248 沃博伊斯 250 拉姆齐路以西,沃博伊斯 251 庄园农场建筑,沃博伊斯 253 斯特林巷以南,沃博伊斯 255 法里尔路以南,沃博伊斯 257 车站路以西延伸,沃博伊斯 259 亚克斯利 261 阿斯库巷,亚克斯利 262 亚克斯帕克,亚克斯利 264
摘要 可再生能源在发电方面的应用仍在不断进步,其中最重要的是聚光太阳能,它在过去几年的发电中发挥了突出的作用。然而,关注经济方面仍然对确保这些项目的实施很重要,因为许多国家关注的是投资项目的必要成本和这些现代技术产生的电力成本。在本研究中,我们将对两种技术系统中聚光太阳能发电进行调查和经济分析:斯特林碟式发电和电力塔,并使用一种先进的电力存储系统,即氢气的生产和储存。我们将计算平准化电力成本 (LCOE),以了解该混合系统中生产和储存电力的总电力成本,该成本与投资成本 I t、运营和维护成本 (O&M)、利息价格和发电量有关。该系统在成本方面显示出了以低价生产电力的可能性,因为这种混合系统生产的电力成本在0.112至0.172美元/千瓦时之间,这是一个具有竞争力的成本,确保了除了以可持续和环保的方式生产电力之外,应用和投资的可能性。
胶体系统实验控制的最新进展推动了中尺度热力学装置生产的革命。功能性“教科书”发动机,如斯特林循环和卡诺循环,已在远离平衡的胶体系统中生产出来。同时,此类装置的设计和分析也取得了重大的理论进展。在这里,我们使用热力学几何方法来表征与时变热浴接触的参数谐振子的最佳有限时间非平衡循环操作,特别关注布朗卡诺循环。我们推导出最佳参数化的卡诺循环以及另外两个新循环,并将它们耗散的能量、效率和稳态功率产生相互比较,并与之前测试过的卡诺循环实验方案进行比较。我们证明了,与之前实验测试的方案相比,我们的一款发动机的耗散能量提高了 20%,在其他条件下提高了 ∼ 50%,而我们的最终发动机比我们考虑过的其他发动机更高效、更强大。我们的结果为通过实验实现最佳中尺度热机提供了手段。
这项研究的重点是针对太阳能光伏(PV)和太阳能热技术进行的研究,用于抽水,通常用于灌溉偏远的农村农场,专门考虑撒哈拉以南非洲地区。太阳能光伏系统已被广泛研究是为了灌溉目的,因为油价上涨和PV技术商业化的提高。基于文献,最有效的光伏系统是为了灌溉一个小型恐吓远程农村农场,就成本,抽水能力和系统效率而言。同样,审查了太阳能热系统,并描述了最有效的系统。与PV技术不同,尤其是在小型操作中,缺乏用于水抽水的太阳能热技术。但是,由于本地生产,低投资成本,易于维护和较低的碳足迹的可能性,太阳能热水抽水技术可能能够克服PV技术的缺点,该技术已停止广泛使用该技术用于灌溉应用。考虑到使用斯特林发动机的浓缩太阳能技术的最新发展,可以开发出新型的太阳能热水泵系统。本评论还强调了不同的方法,例如建模,用于调查和优化太阳能系统的性能。