帕金森病 (PD) 是一种渐进性神经退行性疾病,具有运动和非运动症状。深部脑刺激 (DBS) 是一种安全可靠的神经外科对症疗法,适用于符合条件的晚期疾病患者,这些患者接受的药物治疗无法充分控制症状并改善生活质量,或多巴胺能药物会引起运动障碍等严重副作用。DBS 可根据患者的症状进行量身定制,并针对基底神经节-丘脑回路中的各个节点进行治疗,这些节点负责介导疾病的各种症状;丘脑DBS对震颤最有效,苍白球DBS对僵硬和运动障碍最有效,而丘脑底核(STN)的DBS可以同时治疗震颤、运动不能、僵硬和运动障碍,并且即使对于晚期患者也可以减少药物剂量,这使其成为DBS的首选目标。但是,STN中的DBS假设患者年龄不太大,没有认知下降或相关抑郁,并且没有表现出严重和
摘要:背景:基底神经节信号的神经生理症状和行为生物标志物的景观是指的。基于感应的深脑刺激(DBS)的临床翻译还需要对丘脑下核(STN)内光谱生物标志物的解剖结构进行透彻的理解。目标:目的是系统地研究频谱地形,包括帕金森氏病(PD)患者的STN局部领域(LFP)中广泛的子带,并评估其对DBS临床反应的预测性。方法:使用多接触DBS电极的70例PD患者(130个半球)记录了STN-LFP。A comprehensive spatial characteriza- tion, including hot spot localization and focality estima- tion, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-fre- quency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS。建立了光谱生物标记图,并用于预测对DBS的临床反应。
丘脑下核(STN)β触发的自适应深脑刺激(ADB)已被证明可提供与常规连续DBS(CDB)相当的临床改进,其能量较少,而能量较少,而刺激较少诱导的副作用。但是,几个问题仍未得到解决。首先,在自愿运动之前和期间,STN Beta谱带功率的逻辑逻辑降低正常。ADBS系统将在帕金森氏病患者运动过程中减少或停止刺激,因此与CDB相比可能损害运动性能。第二,在以前的大多数ADB研究中,Beta功率在400毫秒的时间段内进行了平滑和估计,但是较短的平滑周期可能具有更大的优势,即对Beta功率的变化更加站点,这可以增强运动性能。在这项研究中,我们通过使用标准的400毫秒和较短的200毫秒平滑窗口来评估STNβ触发的ADB的有效性来解决这两个问题。帕金森氏病的13人的结果表明,减少量化β的平滑窗口的确会导致β爆发持续时间缩短,这是通过增加β爆发的数量短于200 ms,并且更频繁地打开/关闭刺激剂,但没有造成的效果。与没有DBS相比,ADB和CDB都在同等程度上提高了运动性能。此外,与没有DBS相比,ADB显着地证明是震颤,但不如CDB。二级分析表明,β功率下降和GAM MA功率在预测更快的运动速度方面存在独立的影响,而Beta事件的减少相关的DENCHRONIANINID(ERD)预先固定了更快的运动启动。CDB抑制了Beta和伽玛的抑制作用和伽玛,而在CDB和ADB中,Beta ERD与无DBS相比降低到相似的水平,这共同解释了CDB和ADB期间CDBS运动的SIMI LAR性能提高。这些结果表明,受STN触发的ADB有效地改善了帕金森氏病患者的运动过程中运动性能,而平滑窗口的缩短不会导致任何额外的行为益处。为帕金森氏病开发ADBS系统时,可能没有必要跟踪非常快的beta dy namics;结合β,伽玛和运动解码的信息可能会更有益于最佳治疗震颤所需的其他生物标记。
信息自由和保护隐私法(FOIPPA)该表格上的个人信息是为了根据《 Foippa》第26(a)条的授权来管理《省级销售税法》。有关收集或使用此信息的问题,可以直接向董事,政策,裁决和服务,邮政信箱9442 STN PROV GOVT,VICTORIA BC V8W 9V4(电话:电话:免费致电1-877-388-4440)。
信息自由和隐私保护法 (FOIPPA) 本表上的个人信息收集用于根据 FOIPPA 第 26(a) 条的授权执行省销售税法。有关收集或使用此类信息的疑问,请联系政策、裁决和服务部主任,地址:PO Box 9442 Stn Prov Govt, Victoria BC V8W 9V4(电话:免费电话 1-877-388-4440)。
丘脑下核(STN)β触发的自适应深脑刺激(ADB)已被证明可提供与常规连续DBS(CDB)相当的临床改进,其能量较少,而能量较少,而刺激较少诱导的副作用。但是,几个问题仍未得到解决。首先,在自愿运动之前和期间,STN Beta谱带功率的逻辑逻辑降低正常。ADBS系统将在帕金森氏病患者运动过程中减少或停止刺激,因此与CDB相比可能损害运动性能。第二,在以前的大多数ADB研究中,Beta功率在400毫秒的时间段内进行了平滑和估计,但是较短的平滑周期可能具有更大的优势,即对Beta功率的变化更加站点,这可以增强运动性能。在这项研究中,我们通过使用标准的400毫秒和较短的200毫秒平滑窗口来评估STNβ触发的ADB的有效性来解决这两个问题。帕金森氏病的13人的结果表明,减少量化β的平滑窗口的确会导致β爆发持续时间缩短,这是通过增加β爆发的数量短于200 ms,并且更频繁地打开/关闭刺激剂,但没有造成的效果。与没有DBS相比,ADB和CDB都在同等程度上提高了运动性能。此外,与没有DBS相比,ADB显着地证明是震颤,但不如CDB。二级分析表明,β功率下降和GAM MA功率在预测更快的运动速度方面存在独立的影响,而Beta事件的减少相关的DENCHRONIANINID(ERD)预先固定了更快的运动启动。CDB抑制了Beta和伽玛的抑制作用和伽玛,而在CDB和ADB中,Beta ERD与无DBS相比降低到相似的水平,这共同解释了CDB和ADB期间CDBS运动的SIMI LAR性能提高。这些结果表明,受STN触发的ADB有效地改善了帕金森氏病患者的运动过程中运动性能,而平滑窗口的缩短不会导致任何额外的行为益处。为帕金森氏病开发ADBS系统时,可能没有必要跟踪非常快的beta dy namics;结合β,伽玛和运动解码的信息可能会更有益于最佳治疗震颤所需的其他生物标记。
缩写:AUC 曲线下面积 CT 计算机断层扫描 DBS 深部脑刺激 LFP 局部场电位 MER 微电极记录 MES 运动误差评分 MRI 磁共振成像 PD 帕金森病 ROC 接收者操作特性 STN 丘脑底核 SVM 支持向量机 SVR 支持向量回归 UPDRS 统一帕金森病评定量表
本研究介绍了一种噪声消除技术,用于 MER 机器通过丘脑底核深部脑刺激/或刺激器 (STN-DBS) 在局部场电位 (LFP) 中进行电刺激获取的丘脑底核 (STN) 神经元微电极信号。我们提出了一种新方法,用于消除由不同于典型 LFP (低频电位) 信号的脉冲发生器触发的诱导刺激伪影。该方法经过处理和准确性测试,并计算用于体外状态的执行。结果表明,该方法可以很好地抑制刺激伪影。并且还在帕金森病 (PD) 受试者 (患者) 的体内状态下进行了测试。它用于处理从 PD 手术中收集的 LFP 信号,以初步探索 STN、DBS 参数 (刺激强度、刺激电压、频率和幅度脉冲宽度) 内 beta 波段同步变化的定量依赖性。研究结果表明,DBS 过程可以克服过度的β频率(30Hz)活动,并且随着 DBS 电流在 1-3V 范围内增加,刺激频率在 60-120Hz 范围内增加,减少程度也随之增加。该方法为探索诱导电刺激对帕金森脑活动的即时效果提供了科学研究和技术支持,并可作为未来技术的研究工具。
1977年,Mundiner首次使用DBS治疗宫颈肌张力障碍,取得了适度的成功[4]。此后,研究了双侧GPI DBS的主要广义和节肌肌张力障碍[12-15]。在2003年,这些努力导致食品药品监督管理局授予对STN和GPI DBS的人道主义设备的豁免,以治疗患有慢性,医学上棘手的肌张力障碍的患者[9,16]。尽管GPI一直是肌张力障碍患者DBS的主要靶标,但在特定情况下,其他靶标,例如腹侧中间核(VIM)和STN也是有效的替代方法[8,17-19]。随着我们对肌张力障碍发病机理的理解发展为基于网络的疾病模型,大量证据支持了几个新目标的实用性[8,20,21]。在这里,我们将基于网络的疾病模型定义为一种条件,在空间不同但相互联系的大脑区域中的病理学或干预会影响相同的现象学,但可能以不同的方式影响。此外,虽然GPI DBS对原发性肌张力蛋白原(例如特发性或遗传性肌张力障碍)可能有效,但其对继发性肌张力障碍(如中风后或迟发性肌张力障碍)的疗效较不可预测,这突显了替代性
Abstract In this paper, a reduced globus pallidus internal (GPI)-corticothalamic (GCT) model is developed, and a tri-phase delay stimulation (TPDS) with sequentially applying three pulses on the GPI representing the inputs from the striatal D 1 neurons, subthalamic nucleus (STN), and globus pallidus external (GPE), respectively, is pro-摆姿势。GPI可以控制以2 Hz -4 Hz尖峰和波浪放电(SWD)为特征的缺勤性癫痫发作。因此,基于基础神经节 - 丘脑皮质(BGCT)模型,我们首先探索D 1-GPI,GPE-GPI和STN-GPI途径的三重效应对癫痫发作模式。然后,使用GCT模型,我们将TPD应用于GPI上,如果阻止了这些通往GPI的途径,则可能研究替代方法和改进的方法。结果表明,纹状体D 1,GPE和STN确实可以共同且显着影响癫痫发作模式。特别是,如果D 1-GPI,GPE-GPI和STN-GPI途径被切割,则TPD可以有效地再现癫痫发作模式。另外,可以通过对TPDS刺激参数进行很好的调整来获得癫痫发作。这意味着TPD可以扮演类似于基底神经节的调节的替代作用,希望这可以有助于在癫痫的临床应用中开发脑部计算机界面。