(b)对文本和数据挖掘的例外的历史解释证实了技术和概念的观点:立法者在制定2019 DSM指令时,并没有预见到创造性AI模型的技术发展及其破坏性的社会经济效应。专门为语义信息分析而设计的文本和数据挖掘例外。因此,它不能扩展到生成AI模型的综合语法提取功能。考虑到自2019年以来情况发生了多大变化的程度,以及关于技术现实的实质性分析和辩论的仍然存在,也很难想象,《 AI法案》的律师明确的意图可以追溯地在2019年DSM Dissmitive中为文本和数据挖掘例外造成过度扩展的范围。
WNISR 协调员特别感谢 Matthew McKinzie 和 Geoff Fettus(已经很想念你们了)、Ralph Cavanagh、Amory B. Lovins、Axel Harneit-Sievers(我们会想念你们)、Clemens Kunze、Martin Schulz、Claudia Detsch、Stefan Thalhofer、Wolfram König、Jochen Ahlswede、Timo Kopitzko、Hendrik Schopmans、Jürgen Trittin、Matthias Miersch、Julia Verlinden、Steffi Lemke、Gerrit Niehaus、Jutta Paulus、Christina Stober、Eva Stegen、Tanja Gaudian、Fabian Lüscher 和……Angela Schneider 对此项目的热情、创新、原创、自发和/或持续的支持。在此特别感谢 Klaus Mindrup。
Comparative study on capped SiO 2 and TiO 2 to improve efficiency in plasmonic solar cell through modified synthesis approach P. Sarkar a,* , S. Panda b , B. Maji a , A. K. Mukhopadhyay c a Department of ECE, National Institute of Technology, Durgapur-713209, India b Department of ECE, Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex,印度加尔各答-700074,C Margadarshak(导师),AICTE,新德里-110070,印度这项研究研究了等离激元改善对薄膜A-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Sio2纳米颗粒的光子吸收性特性的等离子增强对光子吸收特性的有效性。它还在暴露于阳光的情况下检查了其J-V特性。修饰的Stober方法用于辐照测试,以SIO2 1st剂量不同剂量的反射率较低:0.485mg/ml,SIO2 2nd剂量:0.693mg/ml和Tio2 1st 1st剂量:0.525 mg/ml,Tio2 2nd dose:0.525 ml,Tio2 2nd dose:0.748 ml g/ml g/ml g/ml g/ml g/ml g/ml ml。基于二氧化硅的太阳能电池显示出2.45%的效率提高,而基于二氧化钛的太阳能电池与未涂层样品相比提高了0.657%的效率。(2023年9月26日收到; 2024年1月3日接受)关键字:等离子体,二氧化硅,钛,太阳能电池1。引言工业革命改变了能源生产,运输和消费,但它会造成环境破坏和诸如化石燃料之类的自然来源的耗尽。过渡到清洁能源(例如核和可再生能源)可以减少碳排放,但是由于放射性废物的半衰期长,安全存储既有挑战性。绿色能源趋势正在增加。太阳能是一种有希望的可再生能源,具有最小的环境影响和高效率。太阳能光伏行业在2022年达到了295 GW创纪录的交付能力,将全球安装的PV总容量增加到1,198以上TW [1]。研发集中于提高光转换效率并降低成本以满足全球能源需求。当前的全球光伏太阳能电池市场为90%的晶体硅,10%由多晶半导体的薄膜组成[2,3]。薄膜光伏电池由于其材料的低含量,柔韧性,易于整合和适合大规模生产的能力而作为替代品生长[4,5]。薄膜氢化的A-SI太阳能电池的制造成本较低,简单过程和与各种底物的兼容性,但缺乏效率。
技术描述 在含水层热能存储 (ATES) 中,多余的热量被储存在地下含水层中,以便在后期回收热量。热能被储存为温暖的地下水。地下水还用作将热量传输到地下和从地下传输热量的载体。因此,热能通过从含水层通过井生产和注入地下水来储存和回收。ATES 系统的容量范围从 0.33 MW 到 20 MW(Fleuchaus 等人,2018 年)。通常,ATES 按季节运行。夏季,来自燃气或燃煤发电厂、太阳能发电厂或热电联产厂的多余热量通过热交换器转移到冷地下水中。由此产生的温暖地下水将热量输送到含水层,热量在那里储存起来。在冬季,ATES 通过逆转生产井和注入井中的流量以相反的方向运行。现在,通过热交换器从温暖的地下水中回收储存的热量并用于供暖,而将产生的冷地下水重新注入含水层。通常,注入井和生产井之间的距离在 1000 米到 2000 米之间(Stober 和 Bucher 2014)。含水层的深度也各不相同。例如,在柏林,ATES 的深度在浅层含水层中为 30 米到 60 米之间,而在诺伊鲁平,深度约为 1700 米。在荷兰,大多数 ATES 系统使用地下深度在 20 米到 150 米之间的含水层(Bloemendal 和 Hartog 2018)。与深度相对应,热存储以不同的温度运行。低温 (LT) ATES 的运行温度低于 30°C,通常位于浅层含水层;中温 (MT) ATES 指的是 30°C 至 50°C 之间的温度范围;高温 (HT) ATES 的运行温度为 50°C 及以上(Lee 2013)。与 MT 和 HT-ATES 相比,由于 LT-ATES 中的温度较低,因此使用热泵将温度升高到加热相关建筑物所需的水平,例如 40°C。同时,抽取的地下水被冷却到 5°C 至 8°C 之间的温度。随后,将冷地下水重新注入冷井。夏季,可以使用冷井中的地下水有效地为建筑物降温。由于热泵的冷却过程,该水被加热到 14°C 至 18°C 之间的温度范围。随后,加热的地下水通过暖井储存在 LT-ATES 中,以便在冬季回收。如果冷却不需要在前一个冬季储存的低温地下水附近安装任何设施,则称为免费冷却。当多余的热量
对含水层热量储存(ATE)中技术的描述,在地下含水层中存储过多的热量,以便在以后恢复热量。热能被存储为温暖的地下水。地下水也被用作载热到地下的载体。因此,热能是通过从含水层从含水层从含水层从含水层中生产和注入地下水来存储和回收的。ATES系统的容量从0.33 MW到20 MW(Fleuchaus等人2018)。通常,ATES是季节性的。在夏季,通过热交换器转移到寒冷的地下水中,来自天然气或燃煤发电厂,太阳能或热电联产厂的过量热量被转移到寒冷的地下水中。由此产生的温暖地下水将热量运输到含热量的含水层中。在冬季,通过逆转生产和注入井的流量,将ATES运行相反的方向。现在,通过热交换器从温暖的地下水中回收了存储的热量,并用于加热目的,而所产生的冷地下水则在含水层中重新注射。通常,注入和生产井之间的距离在1000 m至2000 m之间(Stober and Bucher 2014)。含水层的深度也有所不同。在柏林,例如,在浅水含水层中,ATE的深度在30 m至60 m之间,而在Neuruppin中,它约为1700 m。在荷兰,大多数ATES系统在地下中使用20 m至150 m之间的含水层(Bloemendal和Hartog 2018)。过多热量与深度相对应,在不同温度下进行热量储藏。低温(LT)ate在30°C以下运行,通常位于浅含水层中,中等温度(MT)ates是指在30°C和50°C之间的温度范围和高温(HT)ATES在50°C和更高的温度(Lee 2013)下运行(Lee 2013)。与MT-和HT-ates相比,由于LT-ates的低温,热泵可将温度提高到加热相关建筑物(例如40°C)所需的水平。同时将提取的地下水冷却至5°C和8°C之间的温度。随后,将冷地下水重新注入冷井中。在夏季,可以使用寒冷井中的地下水有效冷却建筑物。由于热泵的冷却过程,该水被加热到14°C和18°C之间的温度范围。随后,加热的地下水是通过LT-ates的温暖井来存储的,以便冬季以后恢复。如果冷却在上一个冬季存储的低温地下水旁边不需要设施,则称为免费冷却。
项目描述中间大气处的连续温度声音对于理解许多垂直耦合过程至关重要,这些垂直耦合过程是由不同尺度上大气波驱动的。尤其是,在平流层/对流层上部的大气潮流及其间歇性尚未得到充分理解和连续的温度测量值对研究其源区域的这种可变性有益。微波遥感技术在此高度区域提供了独特的观察功能。成功的PhD候选者将参与新型毫米波辐射计的开发,以在中间大气中发出温度。这包括实验室和高山高海拔研究站的初始系统测试,以及与国际合作伙伴的现场活动中的仪器部署。她或他将负责检索算法,科学数据分析和大气模拟的发展。要求和应用职位需要物理学硕士学位或工程或环境科学的紧密相关领域。仪器,实验室工作和编程语言的经验(例如matlab,fortran,python)是一个明显的优势。有兴趣的申请人应将其课程范围(包括专业经验),一页动机信,至少一个参考人员的联系方式以及在硕士和单身汉级别获得的成绩向Gunter Stober博士发送。这些观察结果是与国家和国际合作伙伴合作进行的(例如进一步的信息IAP微波司在微波遥感大气方面具有全球公认的专业知识。它在瑞士和远程观测站的运动基地上运行一套地面仪器,以测量臭氧,水蒸气,风和温度。Meteoswiss,DLR),是欧盟Horizon 2020项目的一部分。IAP是伯尔尼大学气候变化研究中心(OCCR)跨学科的成员,学生将从该中心的课程和网络活动中受益。薪水将根据瑞士国家科学基金会SNSF的规定确定。IAP正在积极寻求增加物理学中的妇女人数,因此强烈鼓励妇女申请。关于伯尔尼大学伯尔尼大学的位于瑞士中心。 伯尔尼市是瑞士和广州伯尔尼的首都,并设有一个美丽的历史悠久的老城区中心。 公共交通便可以很容易地访问具有高山环境的伯尼斯·奥伯兰(Bernese Oberland)。位于瑞士中心。伯尔尼市是瑞士和广州伯尔尼的首都,并设有一个美丽的历史悠久的老城区中心。公共交通便可以很容易地访问具有高山环境的伯尼斯·奥伯兰(Bernese Oberland)。