耐甲氧西林金黄色葡萄球菌(MRSA)在医院中造成了明显的病态和死亡率。MRSA的快速,准确的风险地层对于优化抗生素治疗至关重要。我们的研究介绍了一个深度学习模型Pytorch_EHR,该模型利用电子健康记录(EHR)时间序列数据,包括广泛的患者特定数据,以预测两周内MRSA的阳性。8,164 MRSA和22,393例来自德克萨斯州休斯敦市纪念馆Hermann医院系统的非MRSA患者事件用于模型开发。 Pytorch_EHR优于准确性(AUROC PYTORCH_EHR = 0.911,AUROC LR = 0.857,AUROC LROC LR = 0.892),均优于逻辑回归(LR)和光梯度增压机(LGBM)模型。 外部验证来自医学信息MART的393,713例患者事件(MIMIC)-IV数据集(IV)在波士顿的IV数据集证实其优异的准确性(Auroc Pytorch_ehr = 0.859,Auroc LR = 0.816,Auroc LRR = 0.816,AUROC LGBM = 0.838)。 我们的模型有效地将患者分为高,中和低风险类别,可能优化抗微生物疗法,并减少不必要的MRSA特异性抗菌药物。 这突出了深度学习模型在预测MRSA阳性文化,超越传统机器学习模型和支持临床医生的判断方面的优势。8,164 MRSA和22,393例来自德克萨斯州休斯敦市纪念馆Hermann医院系统的非MRSA患者事件用于模型开发。Pytorch_EHR优于准确性(AUROC PYTORCH_EHR = 0.911,AUROC LR = 0.857,AUROC LROC LR = 0.892),均优于逻辑回归(LR)和光梯度增压机(LGBM)模型。外部验证来自医学信息MART的393,713例患者事件(MIMIC)-IV数据集(IV)在波士顿的IV数据集证实其优异的准确性(Auroc Pytorch_ehr = 0.859,Auroc LR = 0.816,Auroc LRR = 0.816,AUROC LGBM = 0.838)。我们的模型有效地将患者分为高,中和低风险类别,可能优化抗微生物疗法,并减少不必要的MRSA特异性抗菌药物。这突出了深度学习模型在预测MRSA阳性文化,超越传统机器学习模型和支持临床医生的判断方面的优势。
Precision Medicine近年来彻底改变了癌症护理。现在,根据特定分子改变的存在,新型疗法被批准,共识指南越来越多地纳入分子测试,以有助于诊断,风险地层和治疗选择。下一代测序(NGS)已成为个性化癌症护理的重要组成部分。该程序将重点介绍NGS用于髓样和淋巴样肿瘤,突出显示如何识别临床上显着的分子改变并将这些发现纳入患者护理中。
导管癌原位(DCIS)是一种无创类型的乳腺癌类型,具有侵入性和影响死亡率的高度可变的潜力。目前,由于缺乏特定的生物标志物,可将低风险病变与较高进展风险的患者区分开来,因此许多DCI患者被过度治疗。在这项研究中,我们分析了来自不同患者的57个纯DCI和313种侵入性乳腺癌(IBC)。 获得了三个级别的基因组数据;基因表达,DNA甲基化和DNA拷贝数。 我们进行了亚型分层分析和DCI和IBC之间的关键差异,这些差异表明亚型特定进展。 在基底样亚型的肿瘤中发现了显着差异:基础样的DCI的增殖较小,并且比基底样IBC显示出更高的分化程度。 此外,与IBC相反,在DCIS之间未识别核心基底肿瘤(以与基底质心相关的高度相关)。 在拷贝数水平上,与基底类的IBC相比,基底样的DCIS显示出较少的拷贝数畸变。 与基底样的DCI和正常组织相比,通过甲基甲基化的分析是基底样IBC中多重原钙粘着蛋白基因的高甲基化,这可能是由远程表观遗传沉默引起的。 这表明在基础类亚型的IBC中特异性地对细胞粘附相关基因进行沉默。在这项研究中,我们分析了来自不同患者的57个纯DCI和313种侵入性乳腺癌(IBC)。获得了三个级别的基因组数据;基因表达,DNA甲基化和DNA拷贝数。我们进行了亚型分层分析和DCI和IBC之间的关键差异,这些差异表明亚型特定进展。在基底样亚型的肿瘤中发现了显着差异:基础样的DCI的增殖较小,并且比基底样IBC显示出更高的分化程度。此外,与IBC相反,在DCIS之间未识别核心基底肿瘤(以与基底质心相关的高度相关)。在拷贝数水平上,与基底类的IBC相比,基底样的DCIS显示出较少的拷贝数畸变。与基底样的DCI和正常组织相比,通过甲基甲基化的分析是基底样IBC中多重原钙粘着蛋白基因的高甲基化,这可能是由远程表观遗传沉默引起的。这表明在基础类亚型的IBC中特异性地对细胞粘附相关基因进行沉默。我们的工作证实,在研究从DCIS到IBC的进展时,亚型地层是必不可少的,并且我们提供了证据,表明基底样DCIS表现出较小的侵略性,并质疑基底样DCIS是基底样DCIS是基础类似基底类似的乳腺癌乳腺癌的直接前体。
微创介入技术在急性和慢性肺栓塞的治疗中越来越常用;然而,这些技术的使用才刚刚出现强有力的临床证据。因此,需要建立强有力的患者选择机制,并仔细考虑干预措施的益处和风险。在本综述中,我们讨论了风险分层机制;多学科肺栓塞应对团队在支持决策方面的作用;并描述了各种常用的介入技术以及如何将它们整合到治疗策略中,以造福我们的患者。皇家版权 2023 由 Elsevier Ltd 代表皇家放射学院出版。保留所有权利。
摘要:近年来,人们对心力衰竭的风险层次的兴趣越来越大,以及使用多种生物标志物来识别与这种情况相关的不同病理生理过程。这样的生物标志物是对肿瘤性-2(SST2)的可溶抑制,它显示出一些整合到临床实践中的潜力。SST2是由心脏纤维细胞和心肌细胞响应心肌应激而产生的。SST2的其他来源是主动脉和冠状动脉和免疫细胞(如T细胞)的内皮细胞。的确,ST2也与炎症和免疫过程有关。我们旨在回顾慢性和急性心力衰竭中SST2的预后价值。在这种情况下,我们还提供了有关其在临床实践中的潜在用途的浮雕。
目的 癌症研究界正在不断发展,以更好地了解肿瘤生物学、疾病病因、风险分层和新治疗途径。然而,临床癌症基因组学领域一直受到重复努力的阻碍,这些努力旨在有意义地收集和解释来自多种高通量模式的不同数据类型并将其整合到临床护理过程中。定制数据模型、知识库和一次性定制的数据分析资源通常缺乏足够的管理和质量控制,而这些资源是临床级的。许多专注于肿瘤基因组解释资源的信息学工作正在进行中,以支持数据收集、存储、管理、协调、整合和分析,以支持病例审查和治疗计划。
目的 癌症研究界正在不断发展,以更好地了解肿瘤生物学、疾病病因、风险分层和新治疗途径。然而,临床癌症基因组学领域一直受到重复努力的阻碍,这些努力旨在有意义地收集和解释来自多种高通量模式的不同数据类型并将其整合到临床护理过程中。定制数据模型、知识库和一次性定制的数据分析资源通常缺乏足够的管理和质量控制,而这些资源是临床级的。许多专注于肿瘤基因组解释资源的信息学工作正在进行中,以支持数据收集、存储、管理、协调、整合和分析,以支持病例审查和治疗计划。
方法:一种回顾性分析应用了1,675个胚胎的数据集,对1,305个个体的非植入基因测试(PGT-A)进行了植入前基因检测,涉及2015年1月和12月在2019年1月和12月之间的单个Eploid Embryo的Cryotransfers。在NGS平台(n = 40),生物学特征的相关性(n = 1,635)和生殖结果的相关性(n = 1,340)的相关性(n = 1,340)的相关性(n = 1,635),将研究的队列分为算法建立(n = 40)。,分别通过QPCR分析和运行间控件验证了可靠性和可重复性。跨生物学特征的相关性,应用地层分析来评估单个贡献者的效果。最终,根据显着效应子(S)调整了mtDNA比与生殖结果之间的相关性。
方法:从1999年至2004年对1673名国家健康和营养检查调查(NHANES)的参与者进行了回顾性横断面研究。开发了三个逻辑回归模型,以评估贫血与糖尿病下肢溃疡之间的关系。模型1针对人口统计和社会经济变量(年龄,性别,种族和种族,教育水平,家庭收入和婚姻状况)进行了调整。模型2包括其他与健康相关的因素(BMI,心血管疾病,中风,糖尿病家族史,高脂血症,酒精和吸烟状况)。模型3进一步包括临床和实验室变量(HBA1C,CRP,总胆固醇和血清铁蛋白水平)。基于年龄,性别,HBA1C水平,体重指数(BMI)和血清铁蛋白水平的分层分析。