为了支持改善患者护理,该活动已由Medscape,LLC和新兴的传染病计划和实施。Medscape,LLC得到认可的持续医学教育委员会(ACCME),认证药物教育委员会(ACPE)(ACPE)和美国护士证书中心(ANCC)的认可,为医疗团队提供继续教育。Medscape,LLC指定此基于期刊的CME活动,最多为1.00 AMA PRA类别1 CRECTER™。医师应仅要求其参与活动的程度相称。成功完成此CME活动(包括参与评估部分),使参与者能够在美国内科医学委员会(ABIM)维护认证(MOC)计划中获得高达1.0 MOC的积分。参与者将赚取相当于该活动的CME积分数量的MOC积分。为了授予ABIM MOC信用,向ACCME提交参与者完成信息是CME活动提供商的责任。所有其他完成此活动的临床医生将获得参与证书。参加本期刊CME活动:(1)回顾学习目标和作者披露; (2)研究教育内容; (3)在https://www.medscape.org/qna/processor/73460?showstandalone=true&src = prt_jcme_eid_eid_mscpedu; (4)查看/打印证书。有关CME问题,请参见第415页。注意:Medscape的政策是避免在认可的活动中使用品牌名称。但是,为了尽可能清楚,在此活动中使用商标名称来区分混合物和不同的测试。这并不是要推广任何特定产品。
•肺炎链球菌在全球范围内的鼻咽度占5-70%,是下气道感染的重要前体。•S。肺炎是5岁以下儿童的主要感染原因,是社区获得性细菌性肺炎的最常见原因。•当前的肺炎球菌疫苗靶向多达23种肺炎链球菌的血清型,但是,循环中有100多种血清型,并且在覆盖的血清型中只有60-70%的有效性,这仅提供部分保护。•金黄色葡萄球菌渐近地定居于20-30%的人口的前鼻孔,并与远处感染的风险增加,包括皮肤和软组织感染,心内膜炎,菌血症和肺炎。•目前没有用于金黄色葡萄球菌的疫苗,预防策略仅限于卫生和接触预防。•corynebacterium是气道中的共生细菌,与减少的金黄色葡萄球菌和肺炎链球菌定殖以及促进更稳定的气道微生物组相关。•在这里,我们调查了Corynebacterium菌落化作为针对病原体感染的预防策略的潜力。
摘要:已知白色念珠菌和链球菌在口腔中彼此协同相互作用。例如,葡萄糖基转移酶B(gtfb)由链球菌分泌,可以与白色念珠菌细胞表面结合,从而促进双物种生物膜形成。然而,介导与链球菌相互作用的真菌因子尚不清楚。白色念珠菌粘附素ALS1,ALS3和HWP1是白色念珠菌单物种生物膜形成中的关键参与者,但尚未评估它们在与S. Mutans相互作用中的作用(如果有的话)。在这里,我们研究了白色念珠菌细胞壁粘附蛋白ALS1,ALS3和HWP1在用链球菌形成双种物种生物膜上的作用。我们评估了白色念珠菌野生型ALS1 ∆ / ∆,ALS3 ∆ / ∆,ALS1 ∆ / ∆ / ∆ / ∆ / ALS3 ∆ / ∆ / ∆ / ∆ / ∆ / ∆ / ∆菌株,通过测量厚度的厚度,构造,构造,构造,构造,构造,代理,代理,构造,构造厚度,将双种物种形成二重种菌株。生物膜。我们观察到,白色念珠菌野生型菌株在这些不同的生物纤维分析中形成了增强的双种物种生物膜,并证实了白色念珠菌和葡萄链梭菌在生物纤维上下文中协同相互作用。我们的结果表明,白色念珠菌ALS1和HWP1是与S. mutans相互作用的主要参与者,因为当ALS1 ∆ / ∆ / ∆或HWP1Δ / ∆ / ∆菌株与链球菌在双重物种生物膜中培养双重生物膜形成。als3似乎在与双种物种生物膜形成中与S. mutans相互作用中似乎并没有明确的作用。总体而言,我们的数据表明白色念珠菌粘合剂ALS1和HWP1功能可调节与链球菌的相互作用,并且可能是未来治疗剂的潜在靶标。
牙菌菌生物膜内链球菌与白色链球菌之间的生态相互作用是驱动龋齿发病机理的重要因素。这项研究旨在调查s。mutans c。白色疾病的生长和通过细胞外膜囊泡(EMV)和泛素化调节(一种关键蛋白转化后修饰)的调节。我们建立了一个Transwell共培养模型,以实现s之间的“联系 - 独立”相互作用。mutans and c。白色唱片。s。mutans eMV与c直接关联。白色念珠菌细胞并促进生物膜的形成和生长。Quantertative泛素化分析显示了s。Mutans极大地改变了c。白色唱片。我们确定了整个c的10,661个泛素化位点。白色唱片蛋白质组及其在与翻译,代谢和应激适应性相关的途径中的富集。与s共同培养。突变导致对糖分解代谢和减少功率产生的398种蛋白质上的泛素化上调。s。mutans上调了c的超氧化物歧化酶3。白色念珠菌,诱导其降解和高度增强的活性氧水平,并同时刺激c。白色唱片的生长。我们的发现阐明了EMV和泛素化调制,作为控制s的关键机制。mutans-c。白色唱片相互作用,并为促进性口服生物膜环境提供新的见解。这项研究显着提高了对牙齿斑块营养不良和龋齿发病机理基础的复杂分子相互作用的理解。
链球菌酶是一种酶,在某些心肌梗死(心脏病发作),肺栓塞和动脉血栓栓塞症的情况下,可以分解血凝块。由于各种心脏病的发病率增加,链霉菌酶的需求在全球范围内高。链球菌酶的主要来源是来自链球菌的各种菌株。链霉菌酶在天然菌株链球菌中的表达受到限制,这是由于SAGD抑制剂基因用于生产链霉菌酶,需要将其淘汰以增加表达。然而,FASX是A组中存在的一个小RNA(SRNA),它通过在SKA mRNA的5'端结合,负责链球菌酶(SKA)基因的转录后调节。s。episimilis是β-蛋白酶蛋白产生链球菌细菌(C组),其中含有FASX的直系同源物,并且本质地表达了临床上重要的溶栓链蛋糕激酶。是为了提高mRNA的稳定性并增加链霉菌酶的表达,而链霉菌酶抑制了SAGD。与野生型相比,我们使用CRISPR-CAS9成功地从SAGD基因中淘汰,并观察到突变株中链球菌表达的相对定量的13.58倍。我们还证明了使用CRISPR-CAS9在Equisimilis中的成功靶基因敲除,可以进一步用于过表达链霉菌酶用于治疗应用。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2023 年 5 月 24 日发布。;https://doi.org/10.1101/2023.05.24.542094 doi:bioRxiv preprint
根据全球疾病负担,PCAP仍然是老年人下呼吸道感染中最普遍的状况。老年人可以表现出非典型症状,例如混乱,一般临床恶化,新发作和潜在疾病的加剧,这可能会引发PCAP的临床怀疑。与年龄相关的免疫力变化和合并症的患病率更高,与年轻人相比,患有PCAP的老年人通常会增加疾病的严重程度增加,肺部并发症的风险更高。疫苗接种是预防的基本,强调需要有效的免疫策略,特别是针对老年人量身定制的。迫切需要加强旨在提高肺炎球菌疫苗接种率的努力。
AcrIIA3 可恢复 CRISPR3 免疫菌株对噬菌体 2972 的敏感性。 (A)将 10 倍稀释的噬菌体 2972(从左到右为 10 0 至 10 ‐ − 7)点在噬菌体敏感菌株 S. thermophilus DGCC7710 及其 CRISPR 免疫衍生物上,这些菌株携带空载体 pTRKL2 (EV) 或表达 AcrIIA3 (AcrIIA3 CHPC640 ) 或 AcrIIA5 (AcrIIA5 D1126 ) 的载体。我们在干覆盖层上点了 5 μl 每种噬菌体稀释液。显示了至少三个生物学重复的代表性图像。 (B)与仅携带空载体的菌株相比,携带 Acr(未免疫、免疫或 CRISPR 免疫)的菌株噬菌体 2972 滴度的恢复倍数。误差线显示平均值±SD(n=3个生物学重复)。
摘要:目前的研究旨在评估乳豆乳肌,Dioon Mejiae和Amanita caesarea对嗜热链球菌和Delbrueckii subsp的潜在影响。保加利亚的生存和暴露于不同恶劣条件(例如胆汁,酸,胃汁和溶菌酶)之后的表现,以模仿从口腔到肠道的消化系统。益生菌蛋白酶活性以评估蛋白水解系统。益生菌是在与植物材料混合的肉汤中培养的,并且在孵育后,将结果与对照样品进行了比较。因此,获得了植物材料的总酚类化合物,总类胡萝卜素化合物,抗氧化活性,糖含量和酸性,以讨论它们对益生菌存活的影响。结果表明,在胆汁耐受性测试中,阿甘那核对益生菌的生存产生了负面影响,并在蛋白酶活性测试中对保加利亚乳酸乳杆菌产生了积极影响。否则,与不同测试中的对照相比,其他植物材料并没有显着改变结果(p> 0.05)。因此,Solanum Mammosum和Dioon Mejiae在增加益生菌存活中没有显着作用(P> 0.05)。
A dynamic subpopulation of CRISPR-Cas overexpressers allows Streptococcus pyogenes to rapidly respond to phage Marie J. Stoltzfus 1 , Rachael E. Workman 1 , Nicholas C. Keith 1 , Joshua W. Modell 1 * 1 Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA *Correspondence: jmodell1@jhmi.edu摘要许多CRISPR-CAS系统,可为细菌提供适应性免疫,以防止噬菌体,在其本土宿主中受到转录抑制。如何根据需要诱导CRISPR-CAS的表达,例如在噬菌体感染期间,人们对此仍然了解不足。在链球菌为链球菌中,一种非典型的指南RNA TRACR-L指导Cas9自动燃烧自己的启动子。在这里,我们描述了具有破坏Cas9结合并导致CRISPR-CAS过表达的单个突变的细胞的动态亚群。CAS9通过提高TRACR-L目标部位的突变率来积极扩大该人群。过表达者表现出更高的记忆形成率,旧记忆的效力更强,并且相对于野生型细胞具有更大的记忆存储能力,而野生型细胞非常容易受到噬菌体感染的影响。然而,在没有噬菌体的情况下,CRISPR-CAS过表达会降低健身。我们建议CRISPR-CAS过表达者是噬菌体防御中的关键参与者,使细菌种群能够对噬菌体的快速转录反应,而无需任何一个单元格中的短暂变化。引言有效的免疫系统必须迅速识别和破坏外国威胁,同时避免宿主内的类似主题。细菌编码了越来越多的免疫效应子来防御噬菌体(噬菌体)和质粒,但是这些系统如何平衡免疫力和自身免疫仍然是一个悬而未决的问题。CRISPR-CAS系统可为细菌提供针对异物核酸的适应性免疫,已作为转化基因编辑工具,但是在许多细胞类型中,CAS核酸酶的异源过表达是有毒的1-4。在其本地宿主中,CRISPR-CAS系统通常在没有噬菌体或其他压力源的情况下被转录抑制。尽管这种抑制能够减轻自身免疫性,但尚不清楚(i)原生CIRSPR-CAS启动子是否足够强大以在其解除抑制状态下引起自身免疫性以及(ii)如何根据需要暂时诱导CRISPR-CAS表达。在某些细菌和古细菌物种中,CRISPR-CAS表达对噬菌体感染的直接反应增加了5-9。但是,对噬菌体感染的任何反应都是与相对较短的裂解周期的种族,这可能会限制这种反应的效用。另一种策略是在噬菌体到来之前增加CRISPR-CAS的表达。的确,许多CRISPR-CAS阻遏物受环境信号的调节,可能会预测噬菌体感染,包括种群密度,包络压力和营养供应10-13。然而,噬菌体感染可能会或可能不会先于这些信号,我们想知道是否可能存在更可靠的机制来为噬菌体感染制备细胞。CRISPR-CAS免疫包括三个阶段:适应,生物发生和干扰。在适应性链球菌中II-A型系统,30 bp的噬菌体DNA或“间隔者”中被从噬菌体中捕获,并将其掺入CRISPR阵列的5'末端,并将