在变体系列中的主字符串的选择(主要字符串不是现有的GTLD)不会更改变体系列中的总字符串,但它可能会更改此组中可分配和阻止变体字符串的子集。因此,申请人应牢记所创建的相应分配和阻塞变体字符串的申请人选择主字符串。一旦选择了主字符串并应用了,它就无法更改,除了品牌tld应用程序1的applied-himer-primary字符串已被放置在争夺中。提交申请后,允许申请人从该应用程序中提取适用的变体标签,但不允许添加其他最初在该应用程序中不适用的变体标签。ICANN提供的LGR工具可用于https://lgrtool.icann.org/可用于确定主字符串的可分配变体字符串。
在经典密码学中,引入了公共随机串和公共参考串模型来解决在普通模型中无法实现的密码任务。在公共参考串模型中,有一个可信设置,它会生成一个各方都可以访问的字符串。在公共随机串模型中,所有参与方可用的公共字符串是均匀随机采样的,从而避免了对可信设置的需要。因此,公共随机串模型是两者中更理想的模型。多年来,人们针对这两个模型提出了许多构造,包括非交互式零知识 [ BFM19 ]、通用组合下的安全计算 [ CF01 ;CLOS02 ] 和两轮安全计算 [ GS22 ;BL18 ]。研究量子密码协议的类似模型是值得的。在这种情况下,可以选择定义本质上是量子的模型。例如,我们可以定义一个模型,其中一个可信设置产生一个量子态,并且参与密码系统的每一方都会收到一个或多个该量子态的副本。事实上,Morimae、Nehoran 和 Yamakawa [ MNY23 ] 和 Qian [ Qia23 ] 的两篇作品都考虑了这种模型,称为通用量子参考弦模型 (CQRS)。他们提出了在这个模型中的无条件安全承诺。量子承诺是量子密码学的一个基础概念。近年来,量子承诺因其对安全计算的意义 [ BCKM21;GLSV21 ] 而得到了广泛的研究 [ AQY22;MY21;AGQY22;MY23;BCQ22;Bra23 ]。在普通模型中不可能实现信息理论上安全的承诺 [ LC97;May97;CLM23 ],这一事实使得 [ MNY23;Qia23 ] 的贡献相当有趣。虽然 CQRS 是公共参考弦模型的量子类似物,但我们可以问是否存在公共随机弦模型的量子类似物。Chen、Coladangelo 和 Sattath [ CCS24 ](以下简称 CCS)最近独立并同时进行的一项工作引入了一个模型,称为公共 Haar 随机状态模型 (CHRS)。在这个模型中,系统中的每个参与方都会收到许多 iid Haar 状态的多个副本。他们在这个模型中提出了伪随机性和承诺的构造。我们工作的目标是进一步研究这个模型。
提取随机性:考虑以下场景:Alice 可以访问某些随机源(例如,测量量子态)。但是,该源并不完美并且可能有偏差,或者对手可能对该源有部分控制权。令 A 为模拟 Alice 源的随机变量,E 为对手系统 Eve(如果没有对手,这可能很简单)。通常,Alice 可以对其源进行隐私放大过程以“平滑”其字符串中的随机性,从而输出均匀随机字符串 S 。通常,该过程涉及选择一个随机的二通用哈希函数 f ,其以 N 位字符串作为输入,并输出 ℓ 位字符串,其中 ℓ ≤ N ;然后 S = f (A) 。此外,可以证明,输出字符串 S 中 Eve 的信息可以忽略不计。
控制器数组的元素需要是字符串(文本或字节字符串)。如果该数据项也是字符串,则控制操作员与数据项匹配,该字符串是通过连接数组中的字符串而构建的。此串联的结果与数组的第一个元素相同的字符串(文本或字节)。(如果数组中没有元素,则.join构造匹配两种空字符串,显然会受到控制运算符目标的约束。)在字符串中的字节序列上执行串联。如果串联的结果是文本字符串,则如果结果是有效的文本字符串(即有效的UTF-8),则结果字符的顺序仅与目标数据项匹配。请注意,与RFC 8949第3.2.3节中使用的算法相反,不需要所有单个字节序列进入串联以构成有效的文本字符串。
条件:布尔值和运算符,条件(如果),替代(如果 - 否),有条件的(if-eLif-else);迭代:状态,and,and,nate,nate,tor,for,for,break,nock,继续,通过;富有成果的功能:返回值,参数,本地和全局范围,功能组成,递归;字符串:字符串切片,不变性,字符串函数和方法,字符串模块;列表为数组。说明性程序:平方根,GCD,指数,总和数字数量,线性搜索,二进制搜索。
摘要:基于流的架构最近被证明是用于在晶格上正规的有效字符串理论的数值模拟的有效工具,否则无法通过标准的Monte Carlo方法进行有效采样。在这项工作中,我们使用随机化流动,这是一种基于非平衡蒙特卡洛模拟的最先进的深度学习结构,以研究不同的有效弦模型。通过与Nambu-Goto模型的精确结果进行比较测试了这种方法的可靠性后,我们讨论了可观察到的结果,这些结果在分析方面具有挑战性,例如字符串的宽度和通量密度的形状。此外,我们对有效的弦乐理论进行了一项新的数值研究,其术语超出了Nambu-Got的作用,其中包括对它们对晶格量规理论的重要性的更广泛讨论。这些发现的组合可以定量描述不同晶格理论中限制机制的细节。这项工作中介绍的结果建立了基于流程的采样器对有效字符串理论的可靠性和可行性,并为更复杂模型的未来应用铺平了道路。
BB84 协议如何工作? 1. Alice 编码她的比特串:0 为 | 0 〉 , | 1 〉 ,1 为 | + 〉 , | - 〉 2. Alice 将她的状态串发送给 Bob 3. Bob 随机测量 | 0 〉 , | 1 〉 或 | + 〉 , | - 〉 基础上的每个量子比特 4. Alice 宣布她的比特串 5. Bob 丢弃使用不同基础进行测量的任何比特 6. Alice 选择一组比特来检查 Eve 是否在窃听
规格 11 模块串 12 模块串 13 模块串 14 模块串 15 模块串 标称容量 121 kWh 132 kWh 143 kWh 154 kWh 165 kWh 模块存储容量 11 kWh/模块(梅赛德斯 - 奔驰能源电池模块) 化学成分 锂离子 NMC,811 标称电压 651 VDC 710 VDC 770 VDC 829 VDC 888 VDC 最小工作电压 541 VDC 591 VDC 640 VDC 689 VDC 738 VDC 最大工作电压 734 VDC 801 VDC 868 VDC 934 VDC 1,000 VDC 最大连续电流 150 A(10 分钟峰值高达 160 A) 待机功耗 30 W – 仅限电池串 通信 Modbus TCP 工作温度 +5°C 至+40°C 环境温度(建议 15 至 25°C 以获得最大容量保证) 存储温度 5°C 至 28°C(-20°C 至 +40°C,最长 1 周) 湿度 0–80% – 无凝结 冷却 强制风冷 安装 19 英寸机架安装 尺寸(宽、深、高) 电池模块(3.5U):483 x 815 x 155 毫米,组串控制器(3U):483 x 665 x 130 毫米 重量 电池模块:63 千克/模块,组串控制器:15 千克/模块 IP 等级 IP20 海拔高度 <2000 米 保修 10 年容量保修(85% DoD),3 年系统保修 标准(2024 年第三季度) CE 标志、IEC 62619、IEC 62477-1、UN38.3、EMC:IEC 61000-6-2、标准:IEC 61000-6-3
一旦通过管道,铁路汽车或卡车运送到现场,就将产品使用内部悬挂式绳子泵入洞穴,从而将盐水置于外部悬挂式串中。然后将盐水存储在高度工程的盐水池中。要从洞穴中卸下产品,使用内部悬挂式绳子将盐水从池塘中抽入洞穴,然后将产品置于管道,铁路汽车或卡车中。