在本文中,提出了基于混合域的深度学习(DL)神经系统,以从脑电图记录(EEG)记录中解释手部运动制备阶段。该系统利用从时间域和时频域中提取的构建,作为混合策略的一部分,以区分暂时窗口(即,EEG时期)前面的手部副群(开放/关闭)和休息状态。对于每个EEG时期,分别通过波束成形和连续的小波变换(CWT)估算了运动皮层中相关的皮质源信号和相应的时频(TF)图。设计了两个卷积神经网络(CNN):具体而言,第一个CNN在时间(T)数据的数据集(即EEG来源)上进行了训练,并被称为T-CNN;第二个CNN通过TF数据数据集(即脑电图源的TF-MAP)进行了训练,并称为TF-CNN。分别从T-CNN和TF-CNN中提取的两组特征和TF-特征分别在单个特征向量(表示为TTF-Features矢量)中串联,该功能用作输入,用于输入标准的多层clas-si i sii-siie-siifination-Filefips。实验结果表明,与基于时间和仅频率的基准基准方法相比,我们所提出的杂种域DL方法的性能有了显着的性能提高,达到76.21±3.77%的平均准确性。
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
由神经保护性氨基醇 / barletti诱导的质膜模型的外层重组; Lucchesi,Giacomo;马斯喀特,Stefano; Errico,Silvia; Barbut,Denise; Danani,安德里亚;扎斯洛夫,迈克尔; Grasso,Gianvito; Chiti,Fabrizio; Caminati,加布里埃拉。- in:胶体和表面。b,生物界面。- ISSN 1873-4367。- 邮票。-222:(2023),pp。113115.1-113115.12。
Biagi,E.,Caroselli,E.,Barone,M.,Pezzimenti,M.,Teixido,N.,Soverini,M。等。(2020)。微生物组组成中的模式与居住在二氧化碳通风口的地中海珊瑚珊瑚钙化钙化的钙化钙化室中的海洋酸化不同。总环境科学,724,1-11 [10.1016/j.scitotenv.2020.138048]。
Vincenzo Dimatteo;埃里卡·利弗拉尼(Erica Liverani);亚历山德罗·阿斯卡里(Alessandro Ascari);亚历山德罗·福纳托(Alessandro Fortunato)。“通过传统滚动和添加剂制造产生的不同激光焊接铝合金的焊接性和机械性能”,2022年,《材料加工技术杂志》,ISSN:0924-0136,第0924-0136卷,第302卷,第302页,页面:117512,:117512
GenevièveRouleau,Quan Nha Hong,Navdeep Kaur,Marie-Pierre Gagnon,JoséCôté等。在医疗保健研究中对系统定量,定性和混合研究评论的系统评论进行了综述:如何评估纳入评论的方法质量质量的评论?混合方法研究杂志,2023,17(1),pp.51-69。10.1177/15586898211054243。hal-04100878
摘要:糖尿病(DM)对全球健康构成了重大挑战,其患病率预计到2045年会急剧上升。这篇叙述性综述探讨了牙周炎(PD)与1型糖尿病(T1DM)之间的双向关系,重点是源自口腔微生物群和宿主免疫反应之间相互作用的细胞和分子机制。进行了2008年至2023年之间发表的研究的全面搜索,以阐明这两种疾病之间的关联。临床前和临床证据表明双向关系,T1DM的个体表现出对牙周炎的敏感性增强,反之亦然。审查包括人类临床研究的最新发现,揭示了T1DM患者口服微生物群组成的变化,包括某些病原物种(例如卟啉念珠菌,prevotella insmedia和cotregatibactibacter contregatibacter contregatemycetemcetemitans)的增加,以及微生物多样性和丰度的转移。该关联所基于的分子机制在炎症细胞因子(如IL-6,IL-8和MMP)中介导的载体氧化应激和失调的宿主免疫反应。此外,诸如RANKL和OPG等骨转换标记的破坏会导致T1DM患者的牙周并发症。尽管治理T1DM患者牙周并发症的预防措施可能会改善整体健康状况,但需要进一步的研究来了解该人群中口腔微生物群,宿主反应,牙周疾病和全身健康之间的复杂相互作用。
NASA的人类研究计划(HRP)通过进行研究和开发技术来维护太空任务期间的健康和安全,在支持人类太空飞行方面起着至关重要的作用。该计划主要侧重于了解与长期空间旅行相关的身体,心理和行为挑战,这对于NASA任务和不断增长的商业空间行业至关重要。HRP支持的研究提供了有关太空飞行环境(包括暴露于微重力和辐射)如何影响人体的有价值的信息。疾病,例如骨密度丧失,肌肉萎缩以及暴露于空间辐射的影响。HRP还制定了减轻太空飞行对宇航员的影响的策略,这些策略包括运动计划,药物和保护技术。此外,HRP还制定了培训计划,以确保宇航员保持健康并在任务期间表现最佳。HRP的发现和创新在确保当前太空飞行任务的安全性和成功方面起着至关重要的作用,并将在未来的长期长期轨道任务中保护宇航员。HRP的科学整合办公室(SIO)已确定了5,000多个出版物,描述了2006年至2024年10月1日发表的HRP资助研究。这些报告代表了10,000多名研究人员的工作,并被100,000多篇文章引用。
由于低成本无人机的扩散代表了安全性的潜在风险增加[1] [2],因此对小小的无人机的检测最近已成为一个非常重要的话题。FMCW雷达被认为是无人机检测的最合适的解决方案之一,因为其架构简单性和短距离检测能力[1] - [4]。对小型无人机的检测代表了一项具有挑战性的任务,因为它们的尺寸非常有限和非反射材料组成意味着非常小的雷达横截面(RCS)。出于这个原因,只能通过利用毫米波频率,高发射功率和具有低噪声图(NF)和高动态范围的接收器来实现雷达检测范围和分辨率的优化。在这种情况下,在性能方面,硝酸盐(GAN)微波技术代表了最佳解决方案,因为它们为发射器和接收器微波前端提供了最先进的优点图[4] - [6]。在微波频率下对上GAN功率密度的开发是实现紧凑,高功率发射器所需的优势,以增加无人机目标的弱回声信号(低RCS)。另一方面,由于低噪声和广泛的动态范围特征的结合,GAN技术在RX部分中也非常有吸引力[5] - [9]。在本文中,我们描述了一种基于GAN的Ka-band MMIC LNA,该LNA将在FMCW雷达的接收器中被利用,以进行小型无人机检测。This feature is of primary importance in a FMCW radar receiver for drone detection, since the LNA needs to detect very low drone-echo signals (close to the thermal noise level), while maintaining its linearity even in presence of strong interferer/blocking signals, which are typically due to radar clutter and the leakage of the power amplifier of its own transmitter [3][4].MMW-GAN技术的采用使得可以同时针对低NF,高增益和大型动态范围,从而导致上KA频段无与伦比的组合性能。
摘要 - 在本文中,我们对在长期外国家应力下具有p-gan栅极的gan-on-on-si功率hemt中发生的时间依赖性排水崩溃进行了广泛的研究。尤其是,研究了由高温偏移应力引起的时间依赖性分解,这是不同过程和结构变化的函数。主要结果表明,通过改变门对距离距离(L GD)和场板配置,故障的物理位置也会发生变化。如果L GD相对较短(3 µm),则会通过排水和源之间的GAN通道层发生时间分解。在这种情况下,较薄的GAN层显着改善了长期偏离应力的稳健性。如果L GD相对长(≥4µm),则故障发生在二维电子气体(2DEG)和源场板之间。在第二种情况下,GAN层的厚度和L GD对时间依赖性分解没有显着影响,而可以优化场板长度以减少暴露于高电场的面积,因此限制了故障的可能性。最后,也已经分析了Algan屏障层的作用。如果L GD = 3 µm,则首选较薄的α层,而如果LGD≥4µm,则较低的铝含量的较厚层会增加较长的时间,以使较长的时间在未稳定应力下分解。