摘要。我们为多项式环(RING-R1C)提出了一个均方根大小的证明系统,特别是对于形式的ℤ[𝑋]/(𝑋 + 1)的环。这些环被广泛用于基于晶格的结构中,这是许多现代现代Quantum cryp-tographic方案的基础。在这些环上为算术构建有效的证明系统受到两个关键障碍的挑战:(1)在𝑄和𝑁的实际流行选择下,环ℤ[𝑋 + + 1)不像野外,因此像Schwartz-Zippel Lemma这样的工具不能应用; (2)当𝑁很大时,这在基于晶格的密码系统的实现中很常见时,该环很大,导致证明尺寸次优。在本文中,我们解决了这两个障碍,可以更有效地证明算术比ℤ[𝑋]/(𝑋 + 1)时,当𝑄是一种“晶格友好的”模量时,包括支持快速计算或power-power-power-two moduli的模量。我们的主要工具是一种新颖的环开关技术。环开关的核心思想是将r1cs通过ℤ[𝑋]/(𝑋 + 1)转换为另一个r1cs实例,而galois环是磁场状且小的(与大小独立于𝑁)。作为(零知识)证明在密码学中有许多应用,我们希望多项式环算术的有效证明系统可以从晶格假设(例如聚合签名,群体签名,可验证的随机功能,或可证实的完全霍omororphicAppleption)中从晶格假设中产生更有效的高级基础构建。
我们研究了矩阵博弈的次线性经典算法和量子算法,这是优化和机器学习中的一个基本问题,具有可证明的保证。给定一个矩阵,矩阵博弈的次线性算法以前只知道两种特殊情况:(1)最大化向量位于 L1 范数单位球中,(2)最小化向量位于 L1 或 L2 范数单位球中。我们给出了一个可以在这两种情况之间平滑插值的次线性经典算法:对于 1 到 2 之间的任何固定 q,我们在某些附加误差范围内求解最小化向量位于 Lq 范数单位球中的矩阵博弈。我们还提供了一个相应的次线性量子算法,该算法可以解决同一任务,并且最大化和最小化向量的维度有二次改进。我们的经典算法和量子算法在维度参数上都是最优的,最多可达多对数因子。最后,我们提出了针对近似 Carathéodory 问题的亚线性经典和量子算法以及 Lq-margin 支持向量机作为应用。