• 缺乏空中优势 • 有争议的通信/网络降级 • 高度机动的战场 • 更致命的战场 • 不断变化的环境(城市、北极、地下等) • 极具挑战性的后勤 • 医疗资产的损耗 • 大量的伤亡(>10,000/60 天)
在具有挑战性的环境中。栖息地多样性 - 腹足动物几乎征服了地球上所有可能的栖息地,适应了广泛的环境条件。这是您可以找到这些不同生物的一些关键栖息地:陆地蜗牛:土地蜗牛也许是我们许多人最熟悉的腹足类动物。在每个大陆都发现了它们,从南美的郁郁葱葱的雨林到非洲干旱的沙漠。土地蜗牛已经适应了各种生活方式,从挖洞到攀登树木和灌木。水生蜗牛:水生腹足类动物高度多样,可以在淡水,咸水和海洋环境中找到。有些人,例如淡水苹果蜗牛,已经适应了慢速河流和池塘的生活,而另一些则像锥蜗牛一样是强大的海洋掠食者。地下蜗牛:令人难以置信的是,一些蜗牛物种适应地下生命,居住在洞穴和地下水系统中[3]。
,但并非工程领域的所有壮举都在上升。从历史城市到世界各地的研究设施,我们已经挖了地下,以创造新的体验。这些聪明的结构通常会从上方融合自然光,并利用设计和网站的体验来展示其地下环境的崎beauty。
1:15 pm从德克萨斯州中部(进化片PAEDOMOLGE)到发育的地表眼睛和地下萨拉曼德物种之间的分歧基因表达»ruben U. Tovar,Brittany A. Dobbins,Rebecca L. Young博士,Katherine Bockrath博士
[1] Fan,Thakker,Bartlett,Miled,Kim,Theodorou,Agha-Mohammadi,“自动杂种地面/未知环境中的空中移动性”,IROS 2019。[2] Lew,Emmei,Fan,Bartlett,Santamaria-Navarro,Thakker,Agha-Mohammadi,“接触惯性探测:碰撞是您的朋友,” ISRR2019。[3] Santamaria-Navarro,Thakker,Fan,Morrell,Agha-Mohammadi,“迈向无人机的弹性自动导航”,ISRR2019。[4] Terry,Lei,Morrell,Daftry,Agha-Mohammadi,“感知衰落的地下环境中的伪影检测和定位”,ICRA 2020(提交)。[5] Ebadi,Change,Palieri,Stephens,Hatteland,Heiden,Thakur,Morrell,Carlone,Carlone,Agha-Mohammadi。“灯:大规模的自主映射和定位,用于探索感知衰落的地下环境,” ICRA,2020年(提交)。[6] Jung,Lee,Shim,Agha-Mohammadi,“ DARPA地下挑战的自动空中勘探无人机”,ICRA 2020年(提交)。[7] Kanellakis,Karvelis,Mansouri,Agha-Mohammadi,Nikolakopoulos,“在地下隧道导航中使用多旋转器使用多旋翼的自主空中搜寻”,ICRA 2020(提交)。[8] Kramer,Stahoviak,Santamaria-Navarro,Agha-Mohammadi,Heckman,“视觉上降解环境的雷达惯性自我效率估计”,ICRA 2020(提交)。[9] Sasaki,Otsu,Thakker,Haesaert,Agha-Mohammadi,“在哪里映射?迭代的漫游者 - 弯曲器路径计划火星探索,” ICRA 2020(提交)。[10] Fan,Nguyen,Thakker,Alatur,Agha-Mohammadi,Theodorou。“基于贝叶斯学习的自适应控制对安全关键系统的自适应控制”,ICRA 2020(提交)。[11] Kanellakis,Karvelis,Mansouri,Agha-Mohammadi,Nikolakopoulos,“在地下环境中进行自主空中航行的视觉驱动的NMPC,IFAC(提交),[12],[12] [12]长期耐药性活动的概念混合空中/地面车辆。[13] Otsu,Tepsuporn,Thakker,Vaquero,Edlund,Walsh,Walf,Wolf,Agha-Mohammadi,“与机器人团队对贫困环境的自动探索和映射”[14] Tagliabue, Schneider, Pavone, Agha-mohammadi, “ The Shapeshifter: a Multi-Agent, Multi-Modal Robotic Platform for the Exploration of Titan, " IEEE Aerospace Conf., 2020 [15] Agha-mohammadi, Hofgartner, Vyshnav, Mendez, Tikhomirov, Chavez, Lunine, Nesnas, “探索冰冷的世界:通过自动协作混合机器人访问泰坦的地下空隙,” IPPW,2018。[16] Heiden,牧师,Vyshnav,Agha-Mohammadi,“通过置信度丰富的3D网格映射:应用于物理机器人的异质传感器融合:Iser,2018年。[17] SABET,AGHA-MOHAMMADI,TAGLIABUE,ELLIOTT,NIKRAVESH,“滚筒式:能源吸引能量的混合杂种空中地形迁移率对极端地形”,IEEE Aerospace Conf。,2019年。[18] Agha-Mohammadi,Heiden,Hausman,Sukhatme,“信心丰富的3D网格映射” IJRR,2019年。[19] Kim,Thakker,Agha-Mohammadi,“不确定性下的风险感知计划的双向价值学习”,IEEE机器人和自动化信,2019年。[21] Parcheta,Nash,Parness,Mitchell,Pavlov,“狭窄的垂直洞穴:映射火山裂缝几何形状”,IPCC,2015年。pp。[20] Agha-Mohammadi,Agarwal,Kim,Chakravorty和Amato,“ Slap:通过在信仰空间中启用动态重建的物理移动机器人的同时本地化和计划,”机器人技术的IEEE Transactions,2018。[22]波士顿,“洞穴和喀斯特科学的百科全书”。Fitzroy-Dearborn Publishers,Ltd。,英国伦敦。355-358,2004。
摘要:本文的目的是评估并介绍从Cajanus Cajan(C。Cajan)和Vigna Subterranean(V.Subterranea)贝壳中获得的水和甲醇提取物的缩放抑制,并使用适当的标准技术从NSUKKA,NSUKKA,NIGERIA收集。定量植物化学分析(以mg/100g表示)揭示了C. cajan的二次代谢产物:类黄酮(2226.50±47.35),酚类(6294.65±117.35),皂苷(2.53±0.15),Alkalins(2.53±0.15),Alkaliacy(587)。 (0.77±0.02),萜类(989.87±26.72)和单宁(176.49±13.18)。同样,V。Subterranean展示了;类黄酮(2226.50±47.35),酚类(6400.11±65.22),皂苷(1.79±0.4),生物碱(114.22±17.64),类固醇(0.46±0.06),0.46±0.06),0.46±0.06,Terpenoids(Terpenoids) (58.18±1.12)。GC-MS分析C. cajan和V. supterranean提取物均显示了不同化合物的14个峰,其中包括; phenol, methylphenol, dimethylphenol, 2-furaldehyde, 2- hydroxymethifuran, levoglucosan, 4-mehtylguaiacol, vinylphenol, 4-vinylguaiacol, eugenol, vanillin, isoeugenol, 4- allyl-2-6dimethoxphenol and dimethylbenzene.此外,FT-IR光谱还鉴定出在3438和3430处的O-H(酚类),CH 2在2923和2884时拉伸脂肪族,以及C = C在两种提取物中都在1635和1643中不饱和。GC-MS,FT-IR和植物化学研究的结果共同表明,这些提取物含有环保成分,尤其是更高浓度的酚类和泡沫剂。这支持C. Cajan和V. Subterranean作为候选人的潜力,以部署为环保量表抑制剂。doi:https://dx.doi.org/10.4314/jasem.v28i10.13许可证:cc-by-4.0开放访问政策:Jasem发表的所有文章均为开放式访问文章,并且可以免费下载,复制,重新分配,reperstribute,repost,repost,reotost,translate和read。版权策略:©2024。作者保留了版权和授予Jasem首次出版的权利。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Orjiocha,S。I; Ibezim-Ezeani,M。U; Obi,C。(2024)。评估Cajanus cajan和Vigna地下壳提取物中抑制化合物的缩放缩放抑制化合物用于工业利用。J. Appl。SCI。 环境。 管理。 28(10)3047-3056日期:收到:2024年7月30日;修订:2024年8月29日;接受:2024年9月21日发表:2024年10月5日关键字:比例;抑制剂;酚类;发泡剂;提取物产业面临着巨大的挑战,该管道堵塞是由管墙上的规模持续积累引起的。 这种生长是由于流体流体中溶解的钙和镁盐的存在而引起的。 这些阻塞导致管道中的各种问题,包括管道腐蚀攻击,流体减少SCI。环境。管理。28(10)3047-3056日期:收到:2024年7月30日;修订:2024年8月29日;接受:2024年9月21日发表:2024年10月5日关键字:比例;抑制剂;酚类;发泡剂;提取物产业面临着巨大的挑战,该管道堵塞是由管墙上的规模持续积累引起的。这种生长是由于流体流体中溶解的钙和镁盐的存在而引起的。这些阻塞导致管道中的各种问题,包括管道腐蚀攻击,流体减少
Anushri Dixit获得了博士学位。 2023年加利福尼亚理工学院的控制和动力系统和她的学士学位2017年佐治亚理工学院电气工程中的电气工程。她目前是普林斯顿大学机械与航空工程系的博士后研究员。她的研究重点是运动计划和对非结构化环境中机器人的控制,同时以原则性的方式解决不确定性。她在风险感知方法的计划方面的工作已在各种机器人平台上部署,这是Team Costar在DARPA Subterranean挑战中努力的一部分。她在《机器人学习会议》(作为合着者)的决策和控制大会上获得了杰出的学生纸奖,并被芝加哥大学选为数据科学的新星。
Christos Papachristos是内华达大学里诺大学计算机科学与工程系的助理教授(任期)。他是机器人工人实验室的主任,其研究活动的重点是自主系统和现场机器人技术,包括无人机和移动操纵系统,强调可靠的长期自主权和机智的身体互动。过去,他曾是自动机器人实验室的研究助理教授和DARPA Subterranean挑战赛的获胜团队,并参加了大西洋两边的数百万个项目。Papachristos博士获得了博士学位。 2015年在希腊的帕特拉斯大学。他的研究取决于无处不在的自主机器人的愿景,这些机器人依靠新颖的系统设计,多模式的感知,智能探索和先进的移动性以及通过移动操纵和情境互动的身体互动来表现出艰苦的环境和自我维持能力,在恶劣的环境和自我维持的能力中表现出了弹性。
资格:超过20年的经验,在三大大洲开发,资金和执行研究项目,保持积极的演讲时间表,并提供可拖延的建议,以进一步保护敏感资源和行星洞穴研究。技能包括统计分析,实验设计,社区生态学,洞穴生物学,危险物种评估,遥感,GIS,GIS,探险计划和高角度绳索工作。I.背景和成就摘要•管理:全球领先的科学探险经验超过20年;监督研究实验室的八年经验。•发表的作品:42篇经过同行评审的论文,一篇编辑卷以及其他50多种出版物,包括已发表的摘要,白皮书,技术报告和流行的科学文章(与Scientific American,EOS,EOS,The Explorers Journal和Mongabay)。•教学:伯利兹的热带生态野外学校(2024年是第3季)•社论和同伴评论:社论:洞穴生物多样性的书籍编辑:地下动物群的物种和多样性(约翰·霍普金斯大学出版社);生态与进化领域的副编辑;地球物理研究行李箱杂志特别会议副编辑;多样性编辑委员会成员;主题编辑,地下生物学。•赠款写作:自2005年以来为生态和行星科学的新型项目提供了超过200万个研究资金。•统计分析:>使用R和其他统计程序的15年经验。专业准备博士学位。Peer review: Advances in Space Research, Bishop Museum Occasional Papers, Diversity, Earth and Space Science, Engineering Geology, Entomologia Experimentalis et Applicata, Insect Conservation and Diversity, International Journal of Speleology, Journal of Cave and Karst Studies, Journal of Natural History, PeerJ, Planetary and Space Science, PLoS ONE, Scientific Reports, Subterranean Biology , Vadose Zone, and Wildlife Society Bulletin .•外语:西班牙语(专业工作能力);法语(有限的工作能力);普通话(非常有限的能力)。(2014),《生物学》(强调生态学),北亚利桑那大学(NAU)标题:关于美国西南和复活节岛的采样,栖息地和洞穴居住节肢动物的采样,栖息地和遗物物种(2003),《环境科学与政策》(强调野生动物生态/遥感),NAU标题:植被土地覆盖的景观规模模型和鸣禽栖息地,Pinaleños山,亚利桑那州 div>
包括每个结构的平方英尺)。 d) 相邻结构的位置(使用实线)。 e) 拟建结构[使用实线并包括每个结构的平方英尺] f) 地形(坡度超过 15% 时等高线间隔不超过五英尺;坡度为 15% 或更低时,显示地块/地段角落的自然轮廓和海拔。 g) 地下结构的位置。 h) 地役权、公用设施、公共通行权、路灯和路缘坡道。 ________ 建筑立面图 ________ 楼层平面图 ________ 照片