Cinis 与 WA3RM 签署合作协议,为未来设施开发和融资。Cinis Fertilizer 已与 WA3RM 签署了合作协议,WA3RM 是一家开发工业规模循环运营的公司。WA3RM 和 Cinis 打算合作开发和融资循环项目,首先从 Cinis 计划在美国霍普金斯维尔建设的硫酸钾生产设施开始。Cinis 已与 WA3RM 达成合作,后者负责创建、开发和构建项目融资,将工业生产残余流回收用于新的盈利业务。此次合作旨在让 WA3RM 为新的生产设施构建外部融资,然后由 Cinis 租赁和运营这些设施。目标是首先为位于美国肯塔基州霍普金斯维尔的硫酸钾工厂达成完整的设计和融资协议,Cinis 将在该工厂从美国电池制造商 Ascend Elements 那里提炼硫酸钠。 Cinis Fertilizer 首席执行官 Jakob Liedberg 表示:“我们很高兴与 WA3RM 达成合作,因为他们与我们一样相信未来在于利用和创造剩余流的价值。在合作中,WA3RM 负责生产设施的融资,然后我们租赁和运营已完工的设施,这意味着生产设施的资本支出不需要由 Cinis Fertilizer 承担。这样,我们可以通过新的生产单位更快地发展,同时最大限度地减少 Cinis 的资本投资,不受我们自身现金流的限制。”WA3RM 首席执行官 Jacques Ejlerskov 表示:“未来的工业发展必须是循环的,多家企业共同合作利用彼此的宝贵资产。我们打算与 Cinis 密切合作,展示如何做到这一点。”WA3RM 拥有快速增长的循环项目组合。该公司最近与金融合作伙伴共同宣布了一项融资框架,用于未来为 WA3RM 在斯堪的纳维亚半岛即将开展的项目提供融资,包括两个大型温室项目,融资额高达 115 亿瑞典克朗。欲了解更多信息,请联系:Cinis Fertilizer 投资者关系和通讯官 Charlotte Becker charlotte@cinis-fertilizer.com +46 730 37 07 07
糖、强化漂白面粉(小麦粉、麦芽大麦粉、烟酸、还原铁、硝酸硫胺素、核黄素、叶酸)、棕榈油和大豆油、葡萄糖、少于 2% 的:硫酸铝、小苏打、食品改性淀粉、瓜尔胶、磷酸一钙、单甘油酯、天然和人工香料、聚山梨醇酯 60、丙二醇酯、红 40、盐、磷酸铝钠、大豆粉、大豆卵磷脂、黄原胶、黄 5。
糖胺聚糖(GAGS)在调节骨形态发生蛋白(BMP)信号传导中的作用代表了最近和未置换的区域。矛盾的报告提出了双重影响:有些表示积极影响,而另一些则表现出负面影响。这种二元性表明插口的定位(在细胞表面或细胞外基质内)或特定类型的GAG可能决定其信号传导作用。负责BMP2结合的乙酰肝素(HS)的精确硫酸盐模式仍然难以捉摸。BMP2表现出比其他GAG的结合偏爱与HS结合。使用模仿细胞外基质的特征良好的生物材料,我们的研究表明,与硫酸软骨素(CS)相反,HS促进了细胞外空间中的BMP2信号传导,从而增强了细胞表面的BMP2生物活性。进一步的观察结果表明,HS六糖内的中央IDOA(2 s)-GLCNS(6s)三硫化基序可增强结合。尽管如此,BMP2还是对各种HS硫酸盐类型和序列的适应性程度。分子动态模拟将这种适应性归因于BMP2 N末端柔韧性。我们的发现说明了GAG和BMP信号之间的复杂相互作用,突出了定位和特定硫酸化模式的重要性。这种理解对具有针对BMP信号通路的治疗应用的生物材料的发展具有影响。
摘要通过使用十二烷基苯甲酸钠(SDBS)和十二烷基硫酸钠(SDS)作为碳糊电电子(CPES)的表面修饰剂(CPES),开发了一种选择性和敏感的方法,用于同时使用十二烷基苯甲酸盐(SDBS)和十二烷基硫酸钠(SDS)来确定多巴胺和尿酸的选择性和敏感方法。在较低的SDS和SDB浓度下,由于表面活性剂与CPE的石蜡的疏水链相互作用,它们在CPE表面形成负电荷的单层。在磷酸盐缓冲溶液中,SDS的表面活性剂的优化浓度为2 mm,SDB的SDB为1 mM(分别为0.1 m,pH 7和pH 6)。与普通CPE相比,用SD(CPE-SD)和用SDB(CPE-SDB)修饰的CPE显示出在0.230 V和0.230 V和尿酸(UA)的电化学反应改善,并在0.345 V时在0.345 V时,由于静电相互作用,由于静电相互作用,在静电相互作用且表面呈稳定的分析和表面上的静电量和表面均可分配为SD和SDESS和SDED的均匀分析。在最佳实验条件下,设计的电极对DA的线性响应从0.53μm到31.6μm,UA从5.95μm到118.97μm。在CPE-SD中发现DA和UA的检测极限为0.26和1.10 µm,而CPE-SDBS的检测限为0.22和0.22和0.38 µm。CPE-SDB和CPE-SD显示出良好的可重复性,可重复性,稳定性和高选择性,可确定血清血清样品中DA和UA。关键字:多巴胺,尿酸,碳糊电极,十二烷基硫酸钠,十二烷基苯甲酸钠
FDA研究人员开发了用于制备包括疫苗在内的多价免疫结合物的新方法。通过使用氢化化学来合成多价免疫原性共轭物,将多种多糖(以所需比例)与至少一个载体蛋白的结合混合物(以多种比例为单位)结合。基于肼的化学方法在将多糖与载体蛋白结合在一起方面非常有效,从而导致疫苗在诱导每种多糖成分的小鼠抗体方面非常有效。共轭方法也不需要复杂的纯化程序,例如色谱和/或硫酸铵沉淀,
修订中的中期中包含的要求包括有关作品的位置和规模,设计/建造/建筑/停车场,景观,景观,自然游乐区/公园,雨水管理,外部工程,雨水脱水,减轻灌木丛,丛林,植被管理,植被管理,学校运输管理,活动管理,活动管理,设施,构建工厂,固定,固定,固定,固定,固定,固定,固定,固定,实用,固定,实用,固定,固定,实用,files figing cons,fime nign,fiec,files,fifce cort,维修,岩土技术和硫酸盐土壤。
摘要:混凝土上的微生物诱导的腐蚀(MIC)代表了一个严重的问题,损害了沿海/海洋基础设施的寿命。但是,目前开发的具体腐蚀保护策略在广泛的应用中存在局限性。在这里,提出了一种生物矿化方法,以在混凝土表面上形成生物矿化膜以进行腐蚀抑制。实验室海水腐蚀实验是在不同的条件下进行的[例如,化学腐蚀(CC),MIC和生物矿物质抑制作用]。进行了混凝土(例如硫酸盐浓度,渗透率,质量和强度)的化学和机械性能测量结果,以及对形成的混凝土生物膜的基于Geno典型的研究,以评估生物矿化方法对腐蚀抑制的有效性。结果表明,MIC导致的腐蚀速率高于CC。然而,生物矿化处理可有效抑制腐蚀,因为生物矿化膜减少了硫酸盐还原细菌(SRB)的总和相对丰度,并充当保护层,以控制硫酸盐扩散并隔离腐蚀性SRB社区,从而有助于延长腐蚀性的SRB社区,这有助于扩展生命的结构。此外,该技术对本地海洋微生物群落没有负面影响。我们的研究有助于生物矿化对腐蚀抑制的潜在应用,以实现主要海洋混凝土结构的长期可持续性。关键词:可持续海洋混凝土,麦克风,生物矿化,腐蚀抑制,SRB社区
5HT 5'羟基戊胺ADA腺苷脱氨酶ADCC抗体依赖性细胞/细胞细胞毒性AFP AFPα-抗蛋白质AICD活化诱导的细胞死亡有助于获得的细胞死亡有助于获得的免疫综合征AIHA自身蛋白酶肌氨基蛋白酶阳离子孔(BB)bal骨蛋白酶囊孔囊孔, carcinoembryonic antigen CGD chronic granulomatous disease CMV cytomegalovirus CRD carbohydrate recognition domain CRH corticotrophin-releasing hormone CRP C-reactive protein CTL cytolytic/cytotoxic T lymphocyte CVID common variable immunodeficiency DAF decay-accelerating factor DAG diacyl glycerol DC dendritic cell DHEA dehydroepiandrosterone DHEAS dehydroepiandrosterone sulfate DTH delayed-type hypersensitivity EAE experimental allergic encephalomyelitis EBV Epstein–Barr virus ELISA enzyme-linked immunosorbent assay ER endoplasmic reticulum FDC follicular dendritic cell FRT female reproductive tract GALT gut-associated lymphoid tissue GC germinal center G-CSF granulocyte colony-stimulating factor GI gastrointestinal GOD generation of diversity HAMA human anti-mouse antibody HBV hepatitis B virus HEV high endothelial venules HHV8 human herpes virus 8 HIV human immunodeficiency virus HLA human leukocyte抗原
常染色体隐性粘膜性糖尿病I(MPS-I)是一种天生的代谢误差,其中硫酸乙酰肝素和硫酸乙酰肝素硫酸盐由于酶α-iduronidase(IDUA)的缺乏而在细胞中积聚在细胞中,这在直系群中更为普遍。以前,据报道α-辅助酶(IDUA)基因中的变体引起MPS-1表型。本研究的目的是确定十个无关的MPS-1的IDUA基因中的遗传变异,影响了巴基斯坦伊斯兰堡的巴基斯坦医学科学研究所(PIMS),巴基斯坦伊斯兰堡的儿童医院。收集了受影响和未受影响的家庭成员的血液样本,并进行了IDUA基因的测序。在对所有鉴定出的引起疾病变体的硅分析中进行了检查,以检查其对蛋白质结构和功能的影响。对所有MPS-1患者的临床检查均表现出粗糙的面部特征,骨骼畸形,疝气,角膜阴影,腹部延伸和肝肾上腺全球。iDUA基因的测序显示了十种错义变化和八个同义变化。在包括突变品尝器,筛分,多形和普罗普兰在内的有机工具中提出了三种变体,是引起疾病的三种变体。在疾病引起的变异中,在我们的分析家庭的80%中鉴定出了先前报道的错义变体,即c.1469t> c引起p.leu490pro。此外,这是一种新颖的14个核苷酸缺失,即C.568_581DEL AACGTCTCCATGAC引起P.ASN190HIFFS*204和单个核苷酸缺失,即C.784DELC引起P.His262thrfs*55造成了与P.His262thrfs*55造成了与MMS-spy sectize seectize。这项研究报告了80%的筛查家庭中的先前报道的错义变体,一种小说(C.568_581DEL AACGTCTCCATGAC)和先前报道的引起疾病的缺失。
摘要。气溶胶生成技术扩展了气溶胶质谱法(AMS)的实用性,用于对机载颗粒和液滴的化学分析。但是,标准的雾化技术需要相对较大的液体量(例如,几毫升)和限制其效用的高样品质量。在这里,我们报告了需要低至10 µL样品的微型欺凌AMS(MN-AMS)技术的发展和表征,并且可以通过使用同位素标记的内部标准标准标记的Or- ganic和无机物质的纳米含量水平进行定量(34 sO 34 os 34 os)。使用标准SO,该技术的检测极限分别以0.19、0.75和2.2 ng的硫酸盐,硝酸盐和器官确定。这些物种的分析回收率分别为104%,87%和94%。该MN-AMS技术成功地应用了使用微小颗粒物(PM)采样器收集的过滤器和iM骨骼样品,可在未蛋白质的大气表调节平台上部署,例如未蛋式的空中系统(UASS)和绑扎气球系统(TBSS)。从能源部(DOE)南部大平原(SGP)天文台进行的UAS场运动收集的PM样品的化学组成。与通过共同固定的气溶胶化学物种物种(ACSM)测量的原位PM组成进行了很好的比较。此外,MN-AM和离子色谱(IC)很好地同意硫酸盐和硝酸盐的测量
