DMSL 06016M08Z2 l 16 8,4 14,5 8,5 M8 42 25 5 8 13 2 0,03 1 06018M08Z2 m 18 10,4 14,5 8,5 M8 42 25 5 8 13 2 0,03 1 06020M10Z3 l 20 12,4 18 10,5 M10 49 30 5 10 15 3 0,05 1 06020M10Z4 l 20 12,4 18 10,5 M10 49 30 5 10 15 4 0,05 1 06022M10Z3 m 22 14,3 18 10,5 M10 49 30 5 10 15 3 0,06 1 06022M10Z4 m 22 14,3 18 10,5 M10 49 30 5 10 15 4 0,06 1 06025M12Z4 l 25 17,3 22 12,5 M12 56 35 5 11 19 4 0,10 1 06025M12Z5 l 25 17,3 22 12,5 M12 56 35 5 11 19 5 0,10 1 06026M12Z4 l 26 18,3 22 12,5 M12 56 35 5 11 19 4 0,10 1 06028M12Z4 l 28 20,3 22 12,5 M12 56 35 5 11 19 4 0,11 1 06028M12Z5 l 28 20,3 22 12,5 M12 56 35 5 11 19 5 0,11 1 06030M16Z5 m 30 22,3 28,5 17 M16 63 40 5 12 24 5 0,18 1 06032M16Z5 l 32 24,3 28,5 17 M16 63 40 5 12 24 5 0,20 1 06032M16Z6 l 32 24,3 28,5 17 M16 63 40 5 12 24 6 0,20 1 06035M16Z5 35 27,3 28,5 17 M16 63 40 5 12 24 5 0,21 1 06040M16Z6 40 32,3 28,5 17 M16 63 40 5 12 24 6 0,25 1 06042M16Z6 42 34,3 28,5 17 M16 63 40 5 12 24 6 0,26 1
摘要:近年来,在线远程教育的机会不断扩大,虚拟空间中基于代理的交互在此背景下引起了人们的关注。在本次演讲中,我将讨论使用虚拟空间和代理的各种教育可能性,并介绍多项研究的示例。我还将介绍我们自己开发的使用基于游戏的学习的系统 [1] 和基于游戏的故事生成系统,该系统可以根据玩家的情绪和行为自动实时生成脚本 [2]。我将讨论系统可以用来影响人类行为的说服技术,以及面部表情和手势的印象和应用,这些是代理的表达 [3],以及虚拟代理在虚拟空间中与其他用户交互时会发生什么。
委员会; 4 Hasina Akter,Plograrlrrrrrg divi:; I.rn,ilrtrigirt,l,:Sh pll:nrl:nrl:ng comrnis:; iott; iott; iott; 5 Shimul Sen,Econorlics l-Lilision General助理高级助理,] 1。:: 1gli,'。1E:Rh l'l'lrrrnit.rg clonrt'1sission,6 S.M.Jamal Ahmed,Chiet高级助理Chiet,行业ARRD ENERGLY LJII'I.RI。RR。 i-lrrr。 :lldr。 7 Sumi Mozumder,农业高级助理Chiel,$/111'1 PGS6RIRI41。 “:1n'1 l'l:':ill i'r ,,。RR。i-lrrr。:lldr。 7 Sumi Mozumder,农业高级助理Chiel,$/111'1 PGS6RIRI41。“:1n'1 l'l:':ill i'r ,,。
- Axel Michaelowa,苏黎世大学,Perspectives - Dimitry Gershenson,加州大学伯克利分校,EcoShift Consulting - Dustin Mulvaney,圣何塞州立大学,EcoShift Consulting - Meinrad Bürer,IFRC 和黄金标准技术咨询委员会 - Richard McNally,SNV - Sumi Mehta,全球清洁炉灶联盟
乳腺癌患者:病例系列与文献综述。Semin Oncol。2021;48:283-291。3.Chikasue T,Kurata S,Sumi A,Matsuda A,Tsubaki F,Fujimoto K 等。接种冠状病毒病 2019 疫苗后单侧腋窝淋巴结氟脱氧葡萄糖摄取。亚洲海洋核医学杂志。2022;10:142-146。4.Satoh H,Ishikawa H,Kagohashi K,Kurishima K,Sekizawa K。肺癌腋窝淋巴结转移。Med Oncol。2009;26:147-150。5.El-Sayed MS,Wechie GN,Low CS,Adesanya O,Rao N,Leung VJ。COVID-19 的发病率和持续时间
Ramya Anche(Uarizona)Ewan Douglas(Uarizona)Jessica Gersh-Range(Princeton)Satoshi Itoh(Nagoya Unive。)Bruce Maintosh(UC Observerries)Jun Nishakawa(Naoj)法国Sicker(Leiden University)Takahiro Sumi(Osaka Unive。)tychi uyama(加州州立大学北山)Michele Woodland(GSFC)Hibiki Yama(Osaka Unive。)Haying Zhou(JPL)奥斯卡携带者 - 戈尼萨尔(Lessia)约翰辩论(STSCI)David Doelman(Sron)Markus Feldt(MPIA)Hajimime Kawana(Isas/Jaxa)(Isas/Jaxa)John Livingston(ABC/NAJ) EAS SPNO高桥(ABC/NAOJ)Pierre Baudoz(Sessia)N。Jeremy Casdin(Princeton)JürgenSchreiber(MPIA)Lisa Altinare(Lam)Eduardo Bendect(JPL)Ellis Bogat(Umaryland)
他们(ILO),Alina Cheras(Who),Chiao-Ling),Chomen),Jenny Cressell),Marine Dutzeneberg(IPU),Ramana Emany(Un Wmen),James),Donamy; Sophie Guy (WHO), Taylo Hana (Pardee), Calur (UUN AUN), Monsbeul (USHAID), FANAD), JeNAS (NUN), Leah Cuncloglo (UNTTID (UNTUD) Feuvre (WIPO), Tuesday Lazic (OCHR (OUCHR), Stephen Leelli), Speak Leonvivoc Lecvivic (UN Woming), Aviscll Leaccin(Ilo McWo),Nath Morty Moran(Who),Widid Ben Moussa(Nuctad),Jothan Moyer(Necation),Nassav(UNCTAD),Robert Prophet)。 (联合国WONMEN),SassañoSassao的意思(Nun Wommen),E Polechuk(UNEP),LucasRamónMurray(Ilga),Colleen Murray(Uniceff),Uililepmomo(Uililelepmomo(Uililepmomo(Unilepmomomo)) Wen),Yem Sumi(Who),(粮农组织)和丽莎·威廉姆斯(Lisa Williams)(经合组织)
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。
Abi Kelly高级管理团队Emeka Okereke手术事务系Sherly George School护理和助产士Liz Hughes Edi部门EDI部门教授Jan Illing/Caroline Delany教育教育中心Martina Crehan Crerriculum Dr. Brennan Deputy Director, GEM Programme Collette Power/ Bryan Shiels Estates Corriena Brien Student Services Noel O'Callaghan CoMPPAS Pat Barry IT Paul Murphy Library Judy Walsh/Kim Shanahan/Cathy Buffini Human Resources Oluchi Porter EDI Unit Justin Murphy EDI Unit Kate O'Sullivan Communications Prof Annette Byrne Physiology & Medical Physics Dr Sumi Dunne Dept of普通实践克里斯蒂娜·鲁德尔(Cristina Ruedell Reschke GEM Atheer Abdelhafiz GEM Sarah Colbert Kaip GEM Dr Therese Lynn GEM Kathryn Wiesendanger GEM Cathal O'Tuile GEM Benedict Green GEM Charlotte Fagar GEM Delfina Mancebo Guinea Arquez GEM Natalie Mack GEM HuiYi Chong DEM Kanyisola Netufi DEM Cherie Sackey DEM Bisrat Girma Behanu DEM Cecelia放射科学家哈特塞尔学院FATMA TAQI学生联盟Jyoti Dhawan学生联盟Rami Rassam学生工会外部顾问Lynsey Kavanagh Pavee Point
7. 印度和芬兰第 20 次联合经济委员会会议于 2022 年 6 月 2 日至 3 日举行。印度方面由联合秘书 Nidhi Mani Tripathi 女士领导,芬兰方面由外交部总干事 Jari Sinkkari 先生领导。JEC 同意了一项跨部门合作的行动计划。8. 2022 年,印度与芬兰的贸易总额(商品和服务)为 30 亿欧元,对印度有利。2022 年的商品贸易额为 14.01 亿欧元,其中印度出口额为 7.65 亿欧元,芬兰进口额为 6.37 亿欧元。与 2021 年的 9.56 亿欧元相比,这一数字增长了 45.5%,令人印象深刻,反映了两国贸易关系的不断增长。 2022 年服务贸易达到 16.5 亿欧元,高于 2021 年的 12.45 亿欧元。截至 2023 年 9 月的贸易数据(商品和服务)显示稳定趋势,达到 23.15 亿欧元。投资 9. 芬兰在印度各国 FDI 股权流入方面排名第 40 位。截至 2023 年 9 月,来自芬兰的 FDI 总额为 5.67 亿美元。占总 FDI 流入的百分比为 0.08%。实际投资会更高,因为许多芬兰公司自 1980 年代或 1990 年代以来就一直在印度,进一步的扩张不算作 FDI。 10. 超过 100 家芬兰公司在印度开展业务。诺基亚、通力电梯、美卓奥图泰、瓦锡兰、芬欧汇川、林斯特龙、富腾、奥斯龙、艾科泰等大型芬兰公司在印度设有制造工厂。自 1995 年以来,印度一直是诺基亚最具战略意义的市场之一,也是其十大高增长地区之一。诺基亚在诺伊达和金奈设有全球交付中心,是印度最大的国际电信基础设施制造商。Numaligarh Refinery Ltd.、芬兰公司 Fortum 和 Chempolis 组成的合资企业正在阿萨姆邦建造一家生物炼油厂。11. 印度在芬兰的投资已超过 10 亿美元,其中包括收购。大约有 30 家印度公司在芬兰开展业务,主要从事软件和咨询行业。Motherson Sumi Systems (MSSL) 收购了 PKC Group(6.2 亿美元)。Trivitron Healthcare 收购了 Ani Labsystems。Mahindra Holidays and Resorts 投资了“Holiday Club Resorts Oy”。印度 Infosys 收购了芬兰的 Fluido Oy。印度的 Epsilon Advanced Material 公司与芬兰石墨供应链公司 Grafintec Oy 签署了一份谅解备忘录,将在瓦萨投资约 1 亿欧元建立一家阳极材料生产工厂。印度技术解决方案公司 Cyient 于 2023 年 6 月以 1 亿欧元收购了芬兰工厂和产品工程服务公司 Citec。2023 年 9 月,Tech Mahindra 在芬兰埃斯波开设了一个创新中心。