团队受益于多个工业合作伙伴的贡献 - 首先也是最重要的是,Bridgers&Paxton的Dwight Dorsey努力将不同的研究组件整合到液相系统的功能设计中。Dwight的实践经验和看似无限的耐心对于我们将这项技术的可行综合设计融合在一起的能力至关重要。如图2所示,该项目受益于多个合同合作伙伴。团队负责人和公司包括与JT Thorpe&Son,Gordon Bigham的Dwight,Joe Rigby,与Job Industrial Services一起,Dereje Shiferaw与Vacuum Process Engineering一起,Glen Bostick,Glen Bostick和David Wait与Nooter/Eriksen和Nathan Tedford一起使用Hatch。Dan Barth具有高温系统设计,汉克价格和Bruce Kelly的太阳能动力学为熔融盐提供了有关泵,阀门和油箱设计的重要细节。与ICL的Reinhard Effenberger博士是研究计划的早期且一致的支持者,领导了工业盐化学的努力。
利用开关,我们评估了WECC中净零的四个方案,发现不仅依赖于重大可再生能源渗透的场景是最具成本效益的最大效果,而且在这些情况下,储能储存的作用至关重要。的确,尽管建模显示WECC中的电源系统成本在所有方案中上升,但阳光 +低成本的电池场景比参考方案低40%。这种情况进一步需要大量存储,对于2010年Skinner Bill(AB 2514)的100倍的存储需求,到2050年的100倍。2虽然鉴于分布式存储,车辆到网格(V2G)和氢气在提供存储和网格可靠性以及减少中央站存储的需求方面可能发挥作用,但该发现可能是高估的,但它强调了机会存储的含量不足。
Sunshot的2030个商业太阳能($ 0.04/kWh)和住宅太阳能($ 0.05/kWh)的目标同样雄心勃勃,需要比2018年基准成本降低成本超过60%。8住宅和商业规模的太阳能光伏成本以“软”成本(例如安装人工,许可,网格互连以及其他非硬件成本)保持较高的速度下降。在美国,关于如何从18,000个管辖权和3,000个公用事业中采用太阳能的规则和法规作为太阳能采用和膨胀软成本的障碍。9对于在美国安装的住宅系统,软性成本占2018年系统总成本的63%。10然而,德国(15%)和澳大利亚(25%)的软性成本大大降低,这表明在美国有很大的降低软性成本。11
该项目在范围、预算和时间方面均符合预期,详见本报告。开发了许多测试用例,用于架构和算法(中间件和优化)的开发和测试:来自电气和电子工程师协会测试用例的配电和传输级数据作为机会混合通信系统和光伏/分布式状态估计任务的输入,这需要对 SunShot 赞助的综合电网建模系统项目进行大量测试和修改;对于光伏状态估计任务,住宅光伏板由模拟的、经过测量校准的时空太阳数据驱动,这些数据来自太阳能集成国家数据集和夏威夷的测量数据。在参考测试用例 A (RTC-A) 的基础上,成功开发了一套基于 NS-3 模拟器的机会混合通信系统仿真模型,用于架构和算法(中间件和优化)的验证和评估:六个代表已开发的机会和混合通信系统的 RTC-A 仿真模型得到了智能解决。这些需要大量的开发和验证参数和功能,对于开发任务来说,还需要应对多种替代通信技术、IPv6 到 IPv4 隧道技术和可扩展性问题的挑战。
DOE:能源部、DOD:国防部、NREL:国家可再生能源实验室、NETL:国家能源技术实验室、ORNL:橡树岭国家实验室、AFRL:空军研究实验室、AFTC:空军测试中心、HAFB:霍洛曼空军基地、MHPCC:毛伊高性能计算中心、UTEP:德克萨斯大学埃尔帕索分校、GFDL:地球物理流体动力学实验室、MHD:磁流体动力学、HPC:高性能计算研究资助的研究活动● UTEP(PI Kumar、Bronson、Sharma、Tandon、Tosh)、UNM(Lead、PI Vorobieff)、NMSU、NMT、PVTAMU V 和 Sandia(PI Tezaur)。,“里奥格兰德百亿亿次级模拟高级研究联盟 (Grande CARES)”,DOE NNSA MSIPP,2022-27,500 万美元(UTEP 125 万美元) ● V. Kumar (PI),“6 马赫钝拱顶的边界层转变测量”,AFOSR,2022-24,65 万美元 ● V. Kumar (PI),扩大国家高级建模与仿真基金会,DOE/ASCR,2022-23,4.4 万美元 ● A. Bronson (PI)、V. Kumar (Co-PI)、O. Cedillos (Co-PI),“HF 合金熔体反应润湿形成 B4C 填料床陶瓷复合材料”,AFOSR,2021-2024,45 万美元 ● V. Kumar ( PI )、R. Edmonds (合作者 - 霍洛曼空军基地),“HHSTT 雪橇水制动现象的 CFD 建模”,AFOSR, 2019 年 6 月 - 2022 年 12 月,360,000 美元(AFOSR 270,000 美元)● V. Kumar(PI)、V. Tandon、B. Calvo,“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2022 年,60,000 美元● V. Kumar(PI)、V. Tandon、B. Calvo,“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2021 年,65,000 美元● V. Kumar(PI)、N. Agarwal(共同 PI),“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2020 年,64,000 美元● V. Kumar(PI)、N. Agarwal(共同 PI),“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会(TWC),2019 年,32,000 美元 ● V. Kumar (PI)、N. Agarwal (Co-PI),“探索针对 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2018 年,26,000 美元 ● C. Ramana (PI)、V. Kumar (CO-PI)、A. Bronson (CO-PI)、D. Hodges (CO-PI),“收购原子层沉积系统以实现用于极端环境应用的先进高电气强度材料”,AFOSR,2019-20 年,590,000 美元 ● V. Kumar ( PI )、R.Gudimetla (合作者 –AFRL),“遥感和成像物理学:开发深湍流对长路径激光传播影响的新指标”,AFOSR,2017 年 5 月 – 2020 年 5 月,150,000 美元 ● A. Bronson (PI)、V. Kumar (Co-PI),“Hf-Ti-Me 合金熔体与 B4C 的计算实验反应润湿”,AFOSR,2017 年 8 月 15 日 – 2020 年 8 月 14 日,668,710 美元(AFOSR 45 万美元)● V. Kumar (PI)、W. Spotz(合作者 – Sandia),“流化床实验的高保真计算模型”,NETL - 能源部-化石能源,2015 年 9 月 1 日 – 2018 年 8 月 31 日,400,000 美元● V. Tandon (PI)、V. Kumar (Co-PI)、N. Soheil (Co-PI)、C. Ferregut (Co-PI)、W. Stern - GFDL (合作者),● V. Kumar (Co-PI),“了解气候变化对德克萨斯州交通系统的影响和成本”,TxDOT,2015 年 9 月 - 2017 年 8 月,25 万美元 ● V. Tandon (PI)、V. Kumar (Co-PI),“了解气候变化对公路水力设计程序的影响”,SPTC 研究、教育和推广支持,2015 年 11 月 1 日至 2017 年 10 月 31 日,9 万美元 ● V. Kumar (PI),“Sunshot 粒子接收器项目:近黑体、封闭式粒子接收器与流化床热交换器集成”,分包(NREL、DOE),2014 年 12 月 - 2015 年 3 月,27,808 美元