Carthera 完成 B 轮融资 4200 万欧元,并获得额外 450 万欧元融资 公司欢迎首家美国风险投资公司 Unorthodox Ventures Carthera 将利用资金启动复发性胶质母细胞瘤的首次注册试验,并扩大神经退行性疾病领域的产品线 法国巴黎,2023 年 12 月 11 日——Carthera 是索邦大学的衍生公司,由 Alexandre Carpentier 教授创立,也是 SonoCloud ® 的开发商,SonoCloud ® 是一种创新的超声波医疗设备,可治疗多种脑部疾病,今天宣布额外获得 450 万欧元的融资以补充其 B 轮融资,使总融资额达到 4200 万欧元(4500 万美元)。该公司欢迎其首家美国风险投资公司 Unorthodox Ventures,进一步加强了其投资者池。现有股东 Supernova Invest、Saint-Genys 和 Bouscas Med 也参与其中。该笔资金将支持 Carthera 启动其首次注册试验,利用其 SonoCloud 技术治疗复发性胶质母细胞瘤 (rGBM)。该研究将是一项国际性、多中心、双组临床试验,随机比例为 1:1。这项开放标签、比较性关键试验将评估接受卡铂化疗并使用 SonoCloud-9 ® 系统治疗以打开血脑屏障 (BBB) 的患者的总体生存率。这将与 GBM 首次复发患者的标准治疗(洛莫司汀和替莫唑胺)进行比较。 “Carthera 的技术解决了一个真正的问题,我们很高兴支持该公司的工作和这项关键试验,”Unorthodox Ventures 的创始 Contrarian Carey Smith 表示。“Carthera 的 SonoCloud 设备在治疗复发性胶质母细胞瘤方面继续显示出积极成果;因此,我们很高兴通过此轮融资加强对该公司的支持,”Supernova Invest 的普通合伙人 Celia Hart 表示。“我们相信,其管理团队的专业知识和临床开发经验将帮助该公司实现其雄心勃勃的计划。” Carthera 首席执行官 Frédéric Sottilini 表示:“我很高兴欢迎 Unorthodox Ventures 加入我们的投资者基础,很高兴看到我们的项目继续引起美国市场的兴趣。我还要感谢我们过去的投资者的持续支持,使我们能够实现为胶质母细胞瘤和其他严重脑部疾病患者提供新治疗选择的使命。” 在进行临床试验的同时,这些资金将用于开发公司在神经退行性疾病领域的临床和临床前产品线。Carthera 正积极寻求与有兴趣使用其 SonoCloud 技术将治疗方法输送到大脑的制药和生物技术合作伙伴建立新的研究和临床阶段合作关系。关于 SonoCloud® SonoCloud 是 Carthera 开发的一种创新医疗设备。它发射超声波,暂时增加脑血管的通透性,以改善治疗分子的输送。由 Alexandre Carpentier 教授发明,并与超声波治疗应用实验室 (Laboratoire) 合作开发
Göker,Ü.D.、Singh, J.、Nutku, F. 和 Priyal, M.,“21-23 个太阳活动周期中太阳表面指数的统计分析”,塞尔维亚天文学杂志(已接受出版;2017 年 8 月 30 日)。 Göker, Ü.D.、Gigolashvili, M. Sh.和 Kapanadze, N.,“21-23 个太阳活动周期中某些色球发射线的太阳光谱辐照度变化”,塞尔维亚天文学杂志,194,71(2017 年)。 Vu četić, M.M.、Dobardžić, A.、Pavlović, M.、Pannuti、T.G.、Petrov、N.、Göker、Ü. D.、Ercan、E.N.,“使用窄带 [SII] 和 H 滤波器对附近星系 IC342 进行光学观测。II- 探测到 16 个光学识别的超新星遗迹候选体”,塞尔维亚天文学杂志,191,67(2015 年)。 Göker,Ü.D.,“基于 0.01 < z ≤ 1.55 处 Ia 型超新星发现和暗能量演化的宇宙学模型”,科学研究与研究杂志,1(6),95(2014 年)。 Pavlović, M.、Urošević, D.、Vuković, B.、Arbutina, B. 和 Göker, Ü. D. ,“银河系超新星遗迹的射电表面亮度与直径关系:样本选择和具有各种拟合偏移的稳健分析”,天体物理学杂志增刊系列,204,4(2013 年)。 Göker, Ü. D. , “太阳日冕磁环电流片中冲击波的磁流体动力学研究”,新天文学,17,130(2012 年)。 Göker, Ü. D. , “日冕中热传导和粘度的重要性以及电流片中单流体和双流体结构的磁流体动力学方程的比较”,太阳和地圈,3 (1),52(2008 年)。 Göker, Ü. D. 和 Taş, G., “食双星:DE Canis Venatici (RX J1326.9+4532) 的光度分析”,IAU Colloq. 会议记录240 关于双星当代天体物理学中的关键工具和测试,240,128(2006 年),捷克共和国布拉格。 Taş, G., Sipahi, E., Dal, H. A., Göker, Ü. D. , Tığrak, E., Yiğen, S., Özdağcan, O., Topçu, A. T., Güngör, C., Çelik, S. 和 Evren, S.,“某些食双星的最小时间”,IAU Inform。Bull.Var.Stars , 5548 , 1 (2004)。引用:我的论文被引用了 37 次(来源是“哈佛大学天体物理数据系统-ADS”)P同行评审会议论文集
摘要候选PEVATRON MGRO J1908 + 06,显示了超过100 tev的硬光谱,是银河平面中最特殊的射线源之一。其复杂的形态和一些可能与非常高的能量(VHE)发射区域相关的可能对应物,无法区分-Ray发射的辐射性和缓慢性。在本文中,我们说明了MGRO J1908 + 06的新的多波长分析,目的是阐明其性质及其超高能量发射的起源。我们对12个CO和13 CO分子线发射进行了分析,证明存在与源区域空间相关的密集分子云的存在。我们还分析了10 GEV和1 tev nding具有硬光谱的对应物之间的12年fermi -large区域望远镜(LAT)数据(1.6)。我们对XMM – Newton数据的重新分析使我们能够对此来源对X射线UX进行更严格的约束。我们证明,一个加速器无法解释整个多波长度数据集,无论它是加速质子还是电子,但是需要一个两区模型来解释MGRO J1908 + 06。VHE发射似乎很可能是由PSR J1907 + 0602在南部地区提供的TEV脉冲星风星云,以及北部地区的Supernova Remnant G40.5 0.5与分子云之间的相互作用。
E-ELT 欧洲极大望远镜 EFT 有效场论 EM 电磁 EMRI 极端质量比螺旋 EoS 状态方程 ET 爱因斯坦望远镜 EWPT 电弱相变 FLRW 弗里德曼-勒梅特-罗伯逊-沃克 FOPT 一级相变 GB 银河双星 GW 引力波 GR 广义相对论 IMBBH 中等质量双黑洞 IMS 干涉计量系统 IR 红外线 KAGRA 神冈引力波探测器 KiDS 千度巡天 K CDM 宇宙常数加冷暗物质 LIGO 激光干涉引力波天文台 LISA 激光干涉仪空间天线 LSS 大尺度结构 MBBH 大质量双黑洞 MBH 大质量黑洞 MCMC 马尔可夫链 蒙特卡罗 MHD 磁流体动力学 NG 南部后藤 PBH 原始黑洞 PISN对不稳定超新星 PLS 幂律敏感性 ppE 参数化后爱因斯坦 PTA 脉冲星计时阵列 RD 辐射主导 QCD 量子色动力学 SGWB 随机引力波背景 SKA 平方公里阵列 SM 粒子物理标准模型 SNR 信噪比 SOBH 恒星起源黑洞 SOBBH 恒星起源双黑洞 TDI 时域干涉测量 UV 紫外
超新星(SNS)是星际介质中重要的能量来源。超新星(SNR)的年轻残留物在X射线区域显示峰值发射,使其成为X射线观测的有趣对象。尤其是,由于其历史记录,接近性和亮度,Supernova Remnant SN1006引起了极大的兴趣。因此,已对其进行了许多X射线望远镜进行了研究。改善此残留物的X射线成像是一项重要但具有挑战性的任务,因为它通常需要对图像整个对象进行不同仪器响应的多次观察。在这里,我们使用Chandra观测来证明使用信息字段理论(IFT)的贝叶斯图像重建能力。我们的目标是从X射线观测值重建,脱卷和空间 - 光谱分辨的图像,并将发射分解为不同的形态,即弥漫性和点状。此外,我们的目标是将来自不同检测器和点的数据融合到马赛克中,并量化结果的不确定性。通过利用有关扩散发射和点源的空间和光谱相关结构的先验知识,该方法允许信号有效分解为这两个组件。为了加速成像过程,我们引入了一种多步进方法,其中使用单个能量范围获得的空间重建用于得出完整时空光谱重建的知情起点。我们将此方法应用于2008年和2012年的SN1006的11个Chandra观察结果,提供了残留物的详细,剥夺和分解的观点。尤其是,弥漫发射的分离视图应提供对残留物中心和冲击前剖面中复杂的小规模结构的新见解。例如,我们的分析揭示了在SN1006的冲击阵线下,锋利的X射线通量最多增加了两个数量级。
上下文。SRG/EROSITA全套调查(ERASSS)结合了完整的天空覆盖范围的优点和电荷夫妇设备提供的能量分辨率,并提供了迄今为止漫射软X射线背景(SXRB)的最整体和最详细的视图。当太阳能电荷交换排放最小,提供SXRB的最清晰的视图时,第一个ERASS(ERASS1)以太阳能最小值完成。目标。我们旨在从西部银半球中SXRB的每个组成部分中提取空间和光谱信息,重点是局部热气泡(LHB)。方法。,我们通过将天空分为相等的信号到噪声箱,从西部银半球的几乎所有方向提取并分析了Erass1光谱。我们将所有垃圾箱装有已知背景成分的固定光谱模板。结果。我们发现LHB的温度在高纬度(| b |> 30°)处表现出南北二分法,南方更热,平均温度为Kt = 121。8±0。6 eV,北部为kt = 100。8±0。5 eV。 在低纬度时,LHB温度向银河平面,尤其是朝向内星系升高。 LHB发射度量(EM LHB)朝着银河杆近似增强。 EM LHB图显示了与局部灰尘柱密度的清晰抗相关性。 特别是,我们发现尘埃腔隧道充满了热等离子体,可能形成更广泛的热星介质网络。 这可能表明LHB向高银河纬度开放。5 eV。在低纬度时,LHB温度向银河平面,尤其是朝向内星系升高。LHB发射度量(EM LHB)朝着银河杆近似增强。EM LHB图显示了与局部灰尘柱密度的清晰抗相关性。特别是,我们发现尘埃腔隧道充满了热等离子体,可能形成更广泛的热星介质网络。这可能表明LHB向高银河纬度开放。假设恒定密度,我们还通过EM LHB构建了三维LHB模型。LHB的平均热压为P热 / K = 10 100 + 1200 - 1500 cm-3 K,值低于典型的超新星残留物和风吹出的气泡。
图1:充满活力的辐射环境。(a)宇宙银河辐射是银河事件的重复,例如发射γ-射线和高能量颗粒的超新星explosions和脉冲星(83.3%P +,13.72%↵,2%β,0.98%重量IONS)。(b)深空的另一个来源是宇宙太阳辐射,它发出p +,β,X射线和γ射线;这些组件的浓度和能量因太阳能活动(太阳风,太阳能和冠状质量弹出)而异。(c) The earth's magnetic field and atmosphere play a significant role in limiting some of these parti- cles reaching the surface of the earth where they are trapped inside the Van Allen outer magnetic belt (it consists mainly of β ), whereas the other cosmic particles interact with atmospheric par- ticles producing β , p + , and a small portion of heavy ions and trapped inside the inner belt.因此,可以将范艾伦带分类为位于地球轨道区域的辐射环境。(d)然而,某些宇宙辐射仍然可以通过这些皮带,并与地球大气分子(例如氧和氮)产生N 0,P +和PIONS(⇡)反应; ⇡最终β对(E -E +)和中微子。除了这些颗粒外,γ射线还从雷暴期间从大气中发出。(e)二元活性材料,例如铀,th及其衍生物,是另一种发射的陆层来源,它发出了↵,β和γ射线。β表示E-或E +颗粒ratiation,并且有些是核反应的无需副产物(↵,β,β,n0和γ-ray),这些副产品由动力工厂FA-a-lations产生。每种辐射的贡献都取决于每个区域中所描绘的电子的位置,有关详细信息,请参见补充表1和2。
年轻的孤立中子星及其疑似位置是定向搜索连续引力波 (GWs) 的有希望的目标 [1]。即使没有从脉冲星的电磁观测中获得计时信息,这种搜索也可以以合理的计算成本实现有趣的灵敏度 [2]。包含候选非脉冲中子星的年轻超新星遗迹 (SNR) 是此类搜索的自然目标,即使在没有候选中子星的情况下,小型 SNR 或脉冲星风星云也是如此(只要 SNR 不是 Ia 型,即不会留下致密物体)。过去十年,已经发表了许多关于孤立、定位良好的中子星(除已知脉冲星外)的连续引力波的上限。它们使用的数据范围从初始 LIGO 运行到高级 LIGO 的第一次观测运行(O1)和第二次观测运行(O2)。大多数搜索都针对相对年轻的 SNR [3-11]。一些搜索瞄准了银河系中心等有希望的小区域 [4, 8, 11–13]。一项搜索瞄准了附近的球状星团,那里的多体相互作用可能会有效地使一颗老中子星恢复活力,从而产生连续的引力波 [14]。一些搜索使用了较短的相干时间和最初为随机引力波背景开发的快速、计算成本低的方法 [4, 8, 11]。大多数搜索速度较慢但灵敏度更高,使用较长的相干时间和基于匹配滤波和类似技术的针对连续波的专用方法。这里我们展示了对 12 个 SNR 的 O2 数据的首次搜索,使用完全相干的 F 统计量,该统计量是在代码流水线中实现的,该流水线源自首次发布的搜索 [3] 等 [5, 9] 中使用的代码流水线。由于 O2 噪声频谱并不比 O1 低很多,我们通过专注于与年轻脉冲星观测到的低频兼容的低频,加深了这些搜索(相对于 O1 搜索 [9])。这一重点使我们能够增加相干时间,并获得显着的改进
由于文明的最初,人类就利用能量为日常活动提供动力。人类的历史与能源使用的历史平行:随着我们的文明和人口的增长,我们的能源使用也是如此。古老的帝国倒下并引起了新的帝国,以及用来为这些帝国持续发展的能源的来源。有时,革命性的进步将人类推向了一个新时代。也许这些转变中最著名的是工业革命,该革命发生在18世纪下半叶,与詹姆斯·瓦特(James Watt)和引入煤炭动力蒸汽机有关。但是,工业革命并不是人类历史上唯一的重大能源转变:许多其他革命之前并遵循了它。能量历史因此是能量过渡的历史。实际上,我们目前正在发现自己处于这样一个过渡的中间:由于化石燃料的大量使用的环境后果变得越来越戏剧化,我们正在寻求从它们过渡到二氧化碳排放较低的能量来源。Earth,我们的家,已有45亿年的历史。 是由太阳星云的积聚形成的 - 圆盘形的气体和尘埃云层由太阳的形成造成 - 它缓慢冷却并最终变得可居住。 地球形成过程产生了我们今天使用的一些能源。 我们将在第24章中介绍的地热热部分是由于在平面形成过程中捕获的剩余热量。Earth,我们的家,已有45亿年的历史。是由太阳星云的积聚形成的 - 圆盘形的气体和尘埃云层由太阳的形成造成 - 它缓慢冷却并最终变得可居住。地球形成过程产生了我们今天使用的一些能源。我们将在第24章中介绍的地热热部分是由于在平面形成过程中捕获的剩余热量。我们将在第11章中返回的铀和th核燃料也与地球本身一样古老 - 它们大概起源于超新星的爆炸,这产生了形成我们太阳系的材料。像现代人类一样的人形生物最近出现在这段漫长的行星史上:它们最初是在东非的200万年前出现的。如果我们星球的整个4.5亿年历史都被凝结成24小时的时间范围,那么人类将在晚上11:59之后略微出现!从那里,它们遍及非洲大陆的其余部分,然后通过现代阿拉伯半岛进入欧亚大陆。美国是通过当时弗罗森(Bering)的弗罗森(Bering Land Bridge)到东北亚的,可能直至公元前20 000年。在我们历史的很长一段时间内,我们的祖先仅使用其肌肉提供的能量为所有日常活动提供动力。这种能量反过来来自消化的食物。这种能源消耗模式的第一个重大变化,因此是人类文明的。500 000年前,当我们的史前祖先学会了