摘要 如果定义我们宇宙物理的参数偏离其当前值,那么观察到的丰富结构和复杂性将得不到支持。本文探讨了类似的参数微调是否适用于技术。人择原理是解释参数观测值的一种方式。该原理限制了物理理论以允许我们存在,但该原理不适用于技术的存在。宇宙自然选择已被提出作为人择推理的替代方法。在这个框架内,微调源于选择能够大量繁殖的宇宙。最初有人提出繁殖是通过超新星产生的奇点进行的,随后有人认为生命可能促进成为后代宇宙的奇点的产生。在这里,我认为技术对于生物产生奇点是必要的,并询问我们宇宙的物理学是否已被选择同时使恒星、智慧生命和能够创造后代的技术成为可能。特定技术似乎具备令人难以置信的能力来执行产生奇点所需的任务,这可能表明通过宇宙自然选择进行微调。这些技术包括硅电子、超导体和由液氦热力学性质实现的低温基础设施。数值研究旨在确定物理参数空间中恒星、生命和技术约束同时得到满足的区域。如果这个重叠参数范围很小,我们应该惊讶于物理学允许技术与我们并存。这些测试不需要新的天体物理或宇宙学观测。只需要对易于理解的凝聚态系统进行计算机模拟。
在极端天体物理环境中,例如在核心坍缩超新星中发现的环境中,中微子密度足够高,可以参与能量和动量的传输、局部化学组成和动力学[1-5]。轻子味的相干演化依赖于弱相互作用引起的中微子间自相互作用[6-10],起着重要作用。超越平均场描述,首次研究密集中微子系统相干演化的量子关联,为此类动力学提供了重要见解[11-28]。到目前为止,他们主要关注二分纠缠见证,如纠缠熵、负性和并发性[15-19,21-26]。在本研究中,我们通过计算随时间演化而产生的 n 个中微子之间的 n -缠结 [29],τ n ,探索了此类系统中的多中微子纠缠。发现后期总 n -缠结对于大系统尺寸来说是可缩放的。我们的工作利用了经典模拟和量子模拟,使用 Quantinuum 20 量子比特囚禁离子量子计算机 H1-1 和噪声模拟器 H1-1E [30]。描述集体相干中微子味振荡的领先阶低能有效哈密顿量由三个项组成。一个项负责真空振荡,源自中微子质量矩阵 [31 – 34]。第二个项来自中微子与物质之间的弱相互作用,主要是ν e 和e − 之间,通过带电电流过程,它导致了Mikheev-Smirnov-Wolfenstein效应[35,36]。下文中我们忽略这一项的贡献。第三个项来自中性流弱相互作用,它导致了中微子的相干前向散射,当中微子密度足够高时,这种散射会变得十分显著[7-10]。由于θ 13 的值很小[37],三味中微子系统可以用涉及电子中微子ν e 和重中微子ν x 的二味系统来近似,后者被认为是ν µ 和ν τ 的组合[38]。 N 个中微子的有效哈密顿量可以表示为味空间中的自旋算符 [ 14 ],
讲师:布伦特·兰道(Brent Landau);代词:他,他,他的;电子邮件:bclandau@utexas.edu学期:2020年秋季课程描述:本课程研究了整个历史上人类文化的范围,使整个历史上的宗教和神话含义含义,首先是夜间的天空,并最终发现了外部空间和整个宇宙的发现。要考虑的主题可能包括:宗教文本和仪式中天体的描述和功能;占星术作为占卜工具的发展;对日食,流星,彗星,超新星和其他不寻常的天体现象的解释;天文学作为一门科学学科的演变以及宗教与其发展的积极和消极的相互作用;关于宇宙的开始,结束和程度的大爆炸和其他理论;身份不明的飞行物体和可能的解释的跨文化现象;是否存在外星人生活以及试图与之联系的伦理的问题;以及流行的科幻叙事的宗教维度,例如《星球大战》,《星际迷航》和其他人。课程编号:UGS 303唯一数字:61690,61695,61700(注意:唯一数字对应于您注册的讨论部分时间;请参阅下面的讨论部分以确定您的唯一数字是什么):在线:在线,同步;这意味着您将需要在一周内的现场会议和讨论部分进行固定时间进行缩放。链接到缩放课程会议,讨论部分和我的每周学生时间将发布在画布上的“缩放标签”下。由于可能出现在这些Zoom完整的课程会议时间:星期一和星期三从9:00-9:50am讨论部分时间(括号中的唯一数字):星期五从8:00-8:50am(61690);星期五从9:00-9:50am(61695);和星期五从10:00-10:50am(61700)的学生时间:也称为“办公时间”,这将是本课程的成员(以及只有本课程)的成员与我聊天或询问有关我们所涵盖的材料的任何问题的时期。
Göker,Ü.D.、Singh, J.、Nutku, F. 和 Priyal, M.,“21-23 个太阳活动周期中太阳表面指数的统计分析”,塞尔维亚天文学杂志(已接受出版;2017 年 8 月 30 日)。 Göker, Ü.D.、Gigolashvili, M. Sh.和 Kapanadze, N.,“21-23 个太阳活动周期中某些色球发射线的太阳光谱辐照度变化”,塞尔维亚天文学杂志,194,71(2017 年)。 Vu četić, M.M.、Dobardžić, A.、Pavlović, M.、Pannuti、T.G.、Petrov、N.、Göker、Ü. D.、Ercan、E.N.,“使用窄带 [SII] 和 H 滤波器对附近星系 IC342 进行光学观测。II- 探测到 16 个光学识别的超新星遗迹候选体”,塞尔维亚天文学杂志,191,67(2015 年)。 Göker,Ü.D.,“基于 0.01 < z ≤ 1.55 处 Ia 型超新星发现和暗能量演化的宇宙学模型”,科学研究与研究杂志,1(6),95(2014 年)。 Pavlović, M.、Urošević, D.、Vuković, B.、Arbutina, B. 和 Göker, Ü. D. ,“银河系超新星遗迹的射电表面亮度与直径关系:样本选择和具有各种拟合偏移的稳健分析”,天体物理学杂志增刊系列,204,4(2013 年)。 Göker, Ü. D. , “太阳日冕磁环电流片中冲击波的磁流体动力学研究”,新天文学,17,130(2012 年)。 Göker, Ü. D. , “日冕中热传导和粘度的重要性以及电流片中单流体和双流体结构的磁流体动力学方程的比较”,太阳和地圈,3 (1),52(2008 年)。 Göker, Ü. D. 和 Taş, G., “食双星:DE Canis Venatici (RX J1326.9+4532) 的光度分析”,IAU Colloq. 会议记录240 关于双星当代天体物理学中的关键工具和测试,240,128(2006 年),捷克共和国布拉格。 Taş, G., Sipahi, E., Dal, H. A., Göker, Ü. D. , Tığrak, E., Yiğen, S., Özdağcan, O., Topçu, A. T., Güngör, C., Çelik, S. 和 Evren, S.,“某些食双星的最小时间”,IAU Inform。Bull.Var.Stars , 5548 , 1 (2004)。引用:我的论文被引用了 37 次(来源是“哈佛大学天体物理数据系统-ADS”)P同行评审会议论文集