摘要 — 基于运动想象的脑机接口 (MI-BCI) 需要校准程序来为新用户调整系统。此过程非常耗时,并且会阻止新用户立即使用系统。由于 MI 信号的主体相关特性,开发独立于主体的 MI-BCI 系统以减少校准阶段仍然具有挑战性。已经开发了许多基于机器学习和深度学习的算法来从 MI 信号中提取高级特征,以提高 BCI 系统对主体的泛化能力。然而,这些方法基于监督学习并提取可用于区分各种 MI 信号的特征。因此,这些方法无法在 MI 信号中找到共同的潜在模式,并且其泛化水平有限。本文提出了一种基于监督自动编码器 (SAE) 的独立于主体的 MI-BCI 来绕过校准阶段。建议的框架在 BCI 竞赛 IV 中的数据集 2a 上得到了验证。模拟结果表明,在九个受试者中的八个中,我们的 SISAE 模型在平均 Kappa 值方面优于传统的和广泛使用的 BCI 算法、常见空间和滤波器组常见空间模式。
拖拉图是脑白质的虚拟表示。它由数百万的虚拟纤维组成,编码为3D polyline,近似于白质轴突途径。迄今为止,拖拉图是最准确的白质表示形式,因此用于诸如神经塑性,脑部疾病或脑网络的术前计划和研究。然而,众所周知的问题是,大部分的拖拉机在解剖学上并不合理,并且可以被视为跟踪程序的伪像。使用验证者,我们使用一种新颖的完全监督的学习方法解决了过滤术的问题。与基于信号重建和 /或大脑拓扑正则化的其他方法不同,我们使用现有的白质解剖学知识来指导我们的方法。使用根据解剖学原理注释的拖拉图,我们训练我们的模型验证者,以将纤维分类为解剖上合理或不合理的纤维。所提出的验证模型是一种原始的几何深度学习方法,可以处理可变尺寸纤维,同时又不变到纤维方向。我们的模型将每个文件视为点的图表,并且通过通过提出的序列边缘卷积之间的边缘学习特征,它可以捕获基本的解剖学特性。在一组广泛的实验中,输出过滤结果高度准确,稳健,并且快速;使用12GB的GPU,对1m纤维的拖拉图进行了填充,需要少于一分钟。可在https://github.com/fbk-nilab/verifyber上获得验证实现和训练有素的模型。
简介:针对被监禁的人和/或监督释放人员的支持艺术是2024 - 25财政年度的新成立的赠款,非营利组织旨在为被监禁的被监督的人和/或人员提供支持艺术编程。资金可通过2023年明尼苏达州公共安全法案提供,根据SF 2909,第2条第6条,第6条。2(k)。资金可用于2025年6月30日。支持艺术计划必须使用艺术,包括但不限于视觉艺术,诗歌,文学,戏剧,舞蹈和音乐,以解决被监禁的人和/或人的支持,治疗和康复性需求。背景:2023年12月14日发布了提案的竞争请求(RFP),征求计划提供支持艺术节目的计划。2023年12月20日,举行了虚拟信息网络研讨会,供潜在的申请人根据需要询问有关RFP的问题并讨论赠款的要求。这笔赠款的征求申请于2024年1月22日关闭。总共为此RFP提交了六个申请。一项申请被没有资格进行审查,因为申请人没有注册,并且在明尼苏达州国务卿担任非营利性组织在明尼苏达州做生意。其他五个申请于2024年2月6日转发给同行审查委员会。三个申请在一个范围内评分以提供赠款奖励。两个申请人不符合有资格获得赠款的财务要求。
引言强大而稳定的抓握是成功机器人操作的关键要求之一。尽管在抓住领域取得了很大进步(Bohg等人2014),最新方法仍可能导致失败。iDe,机器人将足够快地检测出故障以纠正它们。此外,机器人应该能够从错误中学习,以避免将来的类似失败。为了应对这些挑战,我们建议在掌握的初始阶段使用早期的掌握稳定性预测。我们还提出了一种机器学习方法,该方法能够学习一种基于触觉感知并随着时间的推移而改善的纠正失败的graSps行为。在我们以前的工作中(Chebotar等人2016b),我们迈出了使用时空触觉特征和增强学习的第一步,朝着自主重新审向行为。我们能够证明,如果提供了足够的数据,则可以使用线性策略来学习简单的重新制定策略。但是,这些策略并不能比接受过培训的策略对其他类别的对象进行概括。造成这种缺点的主要原因是策略不足以捕获对象的不同形状和物理特性的丰富性。学习一个更复杂且可推广的策略的潜在可能是采用更复杂的政策类别,并收集许多带有各种对象的现实机器人数据来学习策略参数。在中提出了类似的方法(Finn等人这种解决方案的主要弱点是,除了需要大量数据外,这些复杂的政策通常会导致学习者陷入贫困的本地优点(Deisenroth,Neumann和Peters 2013)。在本文中,我们建议以监督的方式学习一项复杂的高维重新制定政策。我们的方法使用简单的线性策略来指导一般政策,以避免本地最小值差,并从较少的数据中学习一般政策。在政策搜索中使用监督学习的想法已在(Levine,Wagener和Abbeel 2015)中使用,在该搜索中,作者使用轨迹优化来指导政策学习过程,并将学习的政策应用于各种操纵任务。2015),作者在
摘要:携带不同设备用于空中悬停操作的无人机的应用正在越来越广泛,但是目前,依赖于悬停控制的强化学习方法,目前有非常有意的研究,并且尚未在物理机器上实施。无人机在悬停控制方面的行为空间是连续且大规模的,这对于基本算法和基于价值的增强学习(RL)算法很难获得良好的结果。响应于这个问题,本文将观察者 - 演员(WAC)算法应用于无人机的悬停控制,该算法可以迅速锁定勘探方向并实现无人机悬停控制的高度鲁棒性,同时改善学习效率和降低学习成本。本文首先利用基于行为价值Q(QAC)和深层确定策略梯度算法(DDPG)的参与者批评算法,用于无人机悬停控制学习。随后,提出了带有添加观察者的批评算法,其中观察者使用带有神经网络作为动态监视的参数的PID控制器,将学习过程转换为监督学习。最后,本文使用了经典的增强学习环境图书馆,健身房和当前主流加固学习框架,PARL,用于
地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。
自然界的适应始于亚细胞、分子水平,生物分子级联的微妙相互作用协调着细胞的无数功能。这些细胞的混合活动成为多细胞系统复杂行为的表现。大自然提供了一系列令人眼花缭乱的例子,展示了智能功能的变化。然而,在合成构造领域,人类已经成功设计了哪些系统?我们的技术力量的界限是什么?与大自然的库相比,人类的成就显得相当微不足道。在智能生物中观察到的复杂行为源于其组成元素之间的集体相互作用和反馈回路,从而产生了新的特性和现象。为了开发表现出更像大脑的智能行为的大规模工程系统,我们必须首先设计出新的分子结构和算法,用于分子尺度的适应和学习。我在这里介绍的研究是朝着这些目标迈出的一小步。我将展示由 DNA 制成的新型分子系统的设计,这些系统表现出复杂的神经计算和学习行为。
我们的基础研究重点关注以下技术问题:在使用监督学习时如何衡量这些预测差异,以及如何在这种背景下减轻这些差异?我们关注现有文献如何在人口统计特征或脆弱性特征可以测量或代理(即使用基于其他数据(例如人名)的概率模型进行预测)时提出这一点,以及在无法做到这一点时的替代方案。然而,我们知道,即使不同人口统计群体的人在预测和最终结果上存在差异,也存在关于这种差异的原因和理由的单独问题。为此,重要的是要考虑使用模型的更广泛背景,并在适当的情况下,考虑任何非歧视性的商业理由或其他理由来衡量任何差异。
摘要 - 本文提出了一个基于变压器的新型框架,旨在通过生成精确的特定于类的对象定位图作为伪标签来增强弱监督的语义细分(WSSS)。在观察到标准视觉变压器中的单级令牌区域的观察基础上可以促进类不足的定位图,我们探索了变压器模型通过学习多个类代币来捕获类别歧视对象定位的特定于类别歧视对象的特定歧视对象的潜力。我们引入了一个多级令牌变压器,该变压器结合了多个类令牌,以启用与贴片令牌的类感知相互作用。为了实现这一目标,我们设计了一种班级感知的培训策略,该策略在输出类令牌和地面实际类标签之间建立了一对一的对应关系。此外,提出了一个对比类别(CCT)模块来增强判别类令牌的学习,从而使模型能够更好地捕获每个类别的独特特征和特性。结果,可以通过利用与不同类代币相关的类键入浓度来有效地生成类歧视对象定位图。为了进一步完善这些定位图,我们提出了从斑块到斑块变压器注意的斑块级成对亲和力的利用。此外,提出的框架无缝补充了类激活映射(CAM)方法,从而在Pascal VOC 2012和MS Coco 2014数据集中显着改善了WSSS性能。这些结果强调了类令牌对WSSS的重要性。代码和模型在此处公开可用。
排干的湿地是温室气体排放的主要来源,但这些湿地的排水网络大部分都未绘制地图,需要更好的地图来帮助森林生产并更好地了解气候后果。我们开发了一种在基于 LiDAR 扫描的高分辨率数字高程模型中检测沟渠的方法。使用数字地形指数的阈值方法可用于检测沟渠。但是,单一阈值通常无法捕捉景观的变化,并且会产生许多假阳性和假阴性。我们假设,通过使用监督学习结合数字地形指数,我们可以在景观尺度上改善沟渠检测。除了数字地形指数外,还可以通过转换数据以包含相邻单元来生成其他特征,以便更好地预测沟渠。随机森林分类器用于定位沟渠,并处理其概率输出以消除噪声,并进行二值化以产生最终的沟渠预测。评估图之间的 Cohen's Kappa 指数的置信区间为 [0.655 , 0.781],置信度为 95%。研究表明,使用机器学习结合一系列数字地形指数的信息,可以提供一种有效的景观尺度自动沟渠检测技术,有助于实际的森林管理和应对气候变化。