自2018年以来,高等教育机构已经意识到“入学悬崖”,这是指未来入学率的预期下降。本文试图通过研究导致预期下降的趋势来描述俄亥俄州的准备机构如何为这一未来。使用2012年至2022年的IPEDS数据,我们分析了俄亥俄州九所公立大学的入学率,收入,债务和人员配备的趋势。我们发现机构在此期间的发展方式有很大差异。我们的分析表明,俄亥俄州是检查机构准备性的说明性案例研究,因为它代表了多个维度的“最坏情况” - 从预计的入学率下降到国家资金限制。本文通过考虑对全国高等教育的影响,并向未来对人口转变的反应进行研究的指示
摘要:水是生命的秘诀,占地70%以上。必须保护我们周围的水资源免受污染和忽视,这可能导致生命和健康丧失。人工智能(AI)有可能改善水质分析,预测和监测系统,以进行可持续和环保的水资源管理。因此,这项工作着重于代表水状态并确定其适用性类别(即安全或不安全)的多模型学习功能。这是通过在融合其异常值后在监督算法和无监督算法之间建立共同混合模型来完成的。此外,还应用了配子群群的优化算法来找到最佳的超参数。使用了两个数据集,在第一个数据集中,提出的混合模型在准确性,AUC和F1分数上优于99.2%的其他模型,但在第二个数据集中,在第二个数据集中,它的精度达到了大约92%的f1 cec,incece incecy incc and cocc and cocc and cocc and cocc and cocc and cocc and cocc,and cc inc inc ancc and coct ycc and acc and c。最后,论文提供了一种方法,研究人员可以使用混合机器学习来预测水质。
图1:一个弱监督的深度学习框架,用于对空间转录组学数据的准确荧光斑点检测。(a)培训数据生成以进行点检测。点标记是通过通过生成建模在一系列常用的经典斑点检测算法中找到共识而产生的。然后使用这些共识标签来训练Polaris的点检测模型。顺序步骤与箭头链接;相关的方法和数据类型与实线链接。(b)示例图像的训练数据生成的演示。斑点位置被转换为编码的检测和距离图,这些检测图指导模型训练期间执行的分类和回归任务。斑点颜色对应于(a)中的注释颜色。(c)示例seq鱼图像的北极星点检测模型的输出。高于默认阈值的回归值设置为零。(b-c)中的回归图像是X和Y指导中平方像素回归的总和。(d)EM方法的示意图,以适合共识点注释创建的生成模型。
胶质瘤是中枢神经系统最常见的原发性恶性肿瘤。胶质母细胞瘤 (GBM) 是最常见的胶质瘤亚型,是发病和死亡的重要原因。该病进展迅速,预后最差,5 年生存率不足 7% (1)。对于新诊断的 GBM 患者,目前的标准治疗仍然是全切除术,然后联合放射治疗和替莫唑胺 (TMZ) 治疗 (2)。O6-甲基鸟嘌呤-DNA 甲基转移酶 (MGMT) 是一种 DNA 修复酶,可逆转烷化剂引起的 DNA 损伤,导致肿瘤对 TMZ 和亚硝脲类全身治疗产生耐药性。启动子甲基化使 MGMT 基因表观遗传沉默,使肿瘤对烷化剂治疗更敏感,并且与接受 TMZ 化疗的 GBM 患者的总体生存期更长有关 (3)。检测MGMT启动子甲基化的方法有很多种,包括甲基化特异性PCR、甲基化特异性高分辨率
积液 487 0.963(0.952, 0.975) 0.920(0.897, 0.945) 0.890(0.872, 0.907) 蛛网膜下腔出血 485 0.976(0.967, 0.985) 0.928(0.905, 0.953) 0.922(0.906, 0.938) 硬膜下血肿 482 0.958(0.946, 0.971) 0.898(0.873, 0.925) 0.890(0.872, 0.909) 气头畸形 474 0.967(0.956, 0.979) 0.922 (0.899, 0.947) 0.915 (0.899, 0.933) 脑实质出血 474 0.955 (0.943, 0.969) 0.901 (0.876, 0.928) 0.890 (0.873, 0.908) 多发性脑梗塞 465 0.865 (0.844, 0.887) 0.738 (0.699, 0.776) 0.866 (0.847, 0.886) 放射冠性脑梗塞 459 0.667 (0.636, 0.698) 0.560 (0.514, 0.606) 0.688 (0.662, 0.716) 腔隙性梗塞 456 0.687 (0.657, 0.719) 0.667 (0.623, 0.713) 0.596 (0.568, 0.624) 基底神经节缺血 454 0.861 (0.839, 0.885) 0.731 (0.692, 0.773) 0.865 (0.847, 0.885) 基底神经节脑梗塞 453 0.716 (0.687, 0.747) 0.561 (0.512, 0.609) 0.778 (0.754, 0.802) 缺血 444 0.928 (0.914, 0.945) 0.867 (0.838, 0.899) 0.837 (0.816, 0.858) 钙化 442 0.825 (0.801, 0.852) 0.692 (0.647, 0.738) 0.836 (0.814, 0.858) 软化灶 436 0.917 (0.900, 0.935) 0.853 (0.821, 0.890) 0.833 (0.811, 0.856) 挫伤 424 0.954 (0.940, 0.969) 0.906 (0.880, 0.934) 0.897 (0.879, 0.914) 尾状核头部脑梗死 422 0.898 (0.878, 0.916) 0.820 (0.784, 0.855) 0.813 (0.790, 0.836) 脑室周围脑梗死 397 0.803 (0.777, 0.829) 0.713 (0.668, 0.758) 0.733 (0.707, 0.759) 结节 362 0.819 (0.792, 0.846) 0.671 (0.624, 0.721) 0.830 (0.810, 0.852)脑室内出血 323 0.986 (0.978, 0.995) 0.944 (0.923, 0.969) 0.942 (0.929, 0.957) 脑肿胀 315 0.952 (0.938, 0.969) 0.898 (0.867, 0.933) 0.880 (0.862, 0.900) 硬化 272 0.840 (0.810, 0.872) 0.746 (0.695, 0.801) 0.823 (0.799, 0.844) 占位性病变 261 0.925 (0.904, 0.946) 0.862 (0.820, 0.904) 0.847 (0.827, 0.869) 硬膜外血肿 252 0.947 (0.927, 0.967) 0.893 (0.857, 0.929) 0.892 (0.875, 0.912) 脑水肿 216 0.965 (0.952, 0.981) 0.903 (0.866, 0.944) 0.900 (0.882, 0.918) 轻微出血 212 0.966 (0.953, 0.982) 0.910 (0.873, 0.953) 0.892 (0.874, 0.911) 丘脑脑梗死 205 0.713 (0.671, 0.754) 0.610 (0.546, 0.673) 0.690 (0.662, 0.717) 软组织肿胀 203 0.937 (0.916, 0.962) 0.877 (0.833, 0.926) 0.852 (0.831, 0.873) 动脉硬化 196 0.810 (0.771, 0.849) 0.668 (0.602, 0.735) 0.831 (0.809, 0.853) 实质性血肿 176 0.982 (0.971, 0.995) 0.949 (0.920, 0.983) 0.938 (0.924, 0.952) 半卵圆中心脑梗塞 151 0.733 (0.690, 0.781) 0.702 (0.636, 0.775) 0.663 (0.635, 0.693) 顶叶脑梗塞 148 0.788 (0.742, 0.836) 0.622 (0.541, 0.703) 0.874 (0.856, 0.894) 额叶脑梗塞 123 0.729 (0.674, 0.787) 0.537 (0.447, 0.626) 0.880 (0.862, 0.899) 蛛网膜囊肿 119 0.844 (0.806, 0.886) 0.714 (0.639, 0.798) 0.831 (0.809, 0.852) 脑积水 108 0.999 (0.998, 1.000) 0.991 (0.981, 1.000) 0.969 (0.961, 0.980) 脑白质变性 107 0.831 (0.787, 0.878) 0.682 (0.598, 0.776) 0.851 (0.830, 0.871) 室旁缺血 104 0.875 (0.834, 0.921) 0.702 (0.615, 0.798) 0.938 (0.925, 0.953) 透明隔腔 102 0.842 (0.801, 0.887) 0.814 (0.745, 0.892) 0.689 (0.662, 0.716) 皮下血肿 102 0.896 (0.857, 0.936) 0.843 (0.775, 0.912) 0.816 (0.793, 0.837) 颞叶骨折 101 0.915 (0.875, 0.959) 0.871 (0.812, 0.941) 0.831 (0.809, 0.854) 额叶缺血 92 0.842 (0.795, 0.893) 0.815 (0.739, 0.891) 0.753 (0.729, 0.778) 硬膜下出血 89 0.985 (0.971, 1.000) 0.955 (0.921, 1.000) 0.943 (0.930, 0.957) 脑室扩大 83 0.992 (0.985, 1.000) 0.976 (0.952, 1.000) 0.817 (0.795, 0.839) 顶骨骨折 83 0.909 (0.864, 0.960) 0.880 (0.807, 0.952) 0.831 (0.809, 0.854) 枕骨骨折 82 0.922 (0.881, 0.971) 0.878 (0.817, 0.951) 0.867 (0.847, 0.886) 枕叶脑梗塞 73 0.918 (0.877, 0.962) 0.849 (0.767, 0.932) 0.841 (0.819, 0.862) 额骨骨折 71 0.875 (0.821, 0.936) 0.817 (0.732, 0.915) 0.760 (0.736, 0.784) 骨瘤 70 0.844 (0.790, 0.906) 0.743 (0.643, 0.843) 0.865 (0.845, 0.886)
本研究引入了一种嵌入式方法,通过将实时软错误率 (SER) 测量与基于 SRAM 的检测器以及离线训练的机器学习模型相结合,用于预测太空应用中的太阳粒子事件 (SPE)。所提出的方法适用于太空应用中使用的自适应容错多处理系统。相对于最先进的技术,我们的解决方案可以提前 1 小时预测 SER,并在 SPE 期间以及正常条件下以小时为单位细粒度跟踪 SER 变化。因此,目标系统可以在高辐射水平出现之前激活适当的辐射硬化机制。基于对使用公共空间通量数据库训练的五种不同机器学习算法的比较,初步结果表明,使用具有长短期记忆 (LSTM) 的循环神经网络 (RNN) 可实现最佳预测精度。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2024 年 3 月 3 日发布。;https://doi.org/10.1101/2023.10.10.23296794 doi:medRxiv 预印本
摘要 — 本项目尝试对亚马逊的短评论和长评论进行情绪分析,并报告其对监督学习支持向量机 (SVM) 模型的影响,以此作为虚假评论分类的桥梁。首先,通过与朴素贝叶斯、逻辑回归和随机森林模型进行比较来评估 SVM 模型,并证明其在准确率 (70%)、精确率 (63%)、召回率 (70%) 和 F1 分数 (62%) 方面更胜一筹(第二个假设)。超参数调整提高了 SVM 模型的情绪分析准确率(准确率为 93%),然后改变评论长度会影响模型的性能,这验证了评论长度会影响分类器(第一个假设)。其次,在虚假评论数据集上进行虚假评论分类,准确率为 88%,而两个数据集的合并子集的准确率为 84%。关键词 — 虚假评论检测、情绪分析、自然语言处理、机器学习 (ML) 监督学习
如果此消息最终未被文档的正确内容替换,则您的 PDF 查看器可能无法显示此类型的文档。您可以通过访问 http://www.adobe.com/go/reader_download 升级到适用于 Windows®、Mac 或 Linux® 的 Adobe Reader 的最新版本。如需有关 Adobe Reader 的更多帮助,请访问 http://www.adobe.com/go/acrreader。Windows 是 Microsoft Corporation 在美国和/或其他国家/地区的注册商标或商标。Mac 是 Apple Inc. 在美国和其他国家/地区注册的商标。Linux 是 Linus Torvalds 在美国和其他国家/地区的注册商标。