1 Biotechnology 2504000053 Afjal Ansari imtiyaz ansari 49 70 1 2 biotechnology 2504000052 prenna tandon tandon tandon pradeep tandon 48 70 2 3 biotechnology 25040037 Khushi Shukla Anand Shukla 42 70 3 4 Biotechnology 2504000038 Bhupendra Kumar Jalam Singh 38 70 4 5 Biotechnology 2504000042 Vishwajeet Singh Manoj Kumar Singh 38 70 5 6 Biotechnology 2504000051 Satish Kumar Ramesh 38 70 6 7 Biotechnology 2504000022 Rubeena Abbas Sayed Ateek Abbas 37 70 7 8 Biotechnology 2504000023 Sohan Lal Srivastava Gopal Ji Srivastava 36 70 8 9 Biotechnology 2504000050 Aryan Varma Ashok Kumar先生36 70 90 9 10 Biotechnology 2504000043 Shreya Kushwaha Shishir Shishir Kushwaha Shishir Kushwaha 34 75 Kanaujia 33 70 11 Biotechnology 2504000024 Rukhsar Mohd Zahor 32 70 12 13 Biotechnology 2504000030 Subhankar Bhunia Tarun Bhunia 32 70 13 14 Biotechnology 2504000031 Riya Saini Hari Kumar Saini 32 70 14 15 Biotechnology 25040000466 Pallavi Srivastava Mahendra Kumar Srivastava 31 70 15 16生物技术2504000029 ????????????????????????????29 70 16 17 Biotechnology 2504000034 Manisha Singh Manoj Kumar Singh 28 70 17 18 Biotechnology 2504000025 Monika Surya Prakash 28 70 18 19 Biotechnology 25040033 Vivek Singh Shyam Kumar 28 70 19 20 Biotechnology 2504000027 Prienshu Singh Jagannath Prasad 25 70 20 21生物技术2504000039 Shanya Malviya Santosh Kumar Malviya 22 21 22 22生物技术2504000036 PRIYAM SRIVASTAV VINOD SRIVASTAV先生Vinod Srivastav 22 70 22 22 22 Suresh Kumar 20 70 24
研究生目录 2020-2021 工程与计算学院 447 机械与材料工程 Arvind Agarwal,主席,杰出大学教授,先进材料工程研究所所长 Wei-Yu Bao,高级讲师 Kevin Boutsen,讲师 Alicia Boymelgreen,客座助理教授 Seyad Ebrahim Beladi,高级讲师 Benjamin Boesl,副教授兼本科生项目主任 Yiding Cao,教授 Jiuhua Chen,教授,教授兼极端条件物质研究中心主任 Zhe Cheng,副教授 Darryl Dickerson,助理教授 George S. Dulikravich,教授 M. Ali Ebadian,教授 Gordon Hopkins,教授兼名誉院长 W. Kinzy Jones,名誉教授 David Kelly,助理教授 Cheng-yu Lai,副教授 Cesar Levy,教授 Cheng-Xian (Charlie) Lin,副教授 Pezhman Mardanpour,助理教授 Dwayne McDaniel,副教授兼研究生项目主任 Carmen Muller-Karger,讲师 Norman Munroe,教授 Daniela Radu,副教授,研究生项目主任 Meer Safa,研究协调员兼实验室经理 Surendra Saxena,名誉教授 Carmen Schenck,高级讲师兼顾问 Jun Sun,大学讲师 Stephen Secules,助理教授(兼职) Alexandra C. Strong,助理教授(兼职) Ibrahim Tansel,教授兼工程制造中心主任 Tony Thomas,讲师 Andres Tremante,大学讲师兼工程多样性中心主任 Chunlei (Peggy) Wang,教授 机械工程是工程专业的一个主要分支,在我们技术先进的社会中发挥着重要作用。发电厂、汽车、飞机、机器人的设计和制造,以及工业机器人改进的运输和生产方法,只是一些重要发明中的一小部分,如果没有机械工程专业的创造力,这些发明就不可能实现。机械工程师是大多数需要自动化、计算机和医疗技术的行业以及太空探索、环境控制和生物工程等不同领域的重要组成部分。事实上,机械工程师对现代生活的各个方面都有直接的投入。美国和发展中国家的高科技行业对机械工程毕业生的需求很高。机械和材料
本届政府的首要任务是持续提高尼泊尔人民的生活水平,同时优先实施包容性经济发展。然而,在由我们经历的外部和内部因素造成的如此具有挑战性的情况下,我们发现这并不容易。编制 2008/09 财政年度经济调查是一项诚实的努力,旨在从全球和国家角度反映该国当前的经济状况。我很高兴向这个庄严的立法议会提交这份经济调查。本调查基于对这些数据和信息的批判性分析,反映和叙述了对经济主要部门状况的观察数据和信息,以及这些部门的变化、取得的成就以及发现的问题和相关问题。本调查基于现有数据和信息,尽可能涵盖对公共财政、货币、金融和对外经济部门最新信息的分析。本调查还涵盖农业、工业、旅游、教育、卫生和经济实体部门的其他方面。在此过程中,我们竭尽全力使其成为一份条理清晰、实用的文件。本调查提出了需要立即实施的政策相关和结构性主题和问题,并优先考虑经济发展和改革。我相信,本调查将对制宪会议和各政党的尊敬成员有所帮助。同样,该文件也应成为知识分子、专业人士、研究人员、教师、学生、工业家、企业家和其他热衷于跟踪国家经济发展的人士的手册。最后,我要感谢所有参与编写这份经济调查报告的人员,特别是财政部经济事务和政策分析司的工作人员、尼泊尔中央银行的有关官员以及相关领域的专家。同样,我要向所有相关部委、部门和其他实体表示衷心的感谢,他们在完成这项工作的过程中提供了必要的数据、信息和其他详细信息。2009 年 7 月 苏伦德拉·潘迪 财政部长
本届政府的首要任务是持续提高尼泊尔人民的生活水平,同时优先实施包容性经济发展。然而,在我们所经历的由外部和内部因素造成的如此具有挑战性的情况下,我们发现这并不容易。编制 2008/09 财政年度经济调查报告是为了从全球和国家角度反映该国当前的经济状况。我很高兴向庄严的立法议会提交这份经济调查报告。本调查报告基于对这些数据和信息的批判性分析,反映和叙述了对经济主要部门状况的数据和信息,以及这些部门的变化、取得的成就以及发现的问题和相关问题。本调查基于现有数据和信息,尽可能涵盖对公共财政、货币、金融和经济对外部门最新信息的分析。本调查还涵盖农业、工业、旅游、教育、卫生和经济实体部门的其他方面。在此过程中,我们竭尽全力,使这份文件井然有序、实用性强。这份调查报告列出了需要立即实施的政策和结构性主题以及经济发展和改革的优先事项。我相信,这份调查报告将对宪法议会和各政党的尊敬成员大有裨益。同样,这份文件也应成为知识分子、专业人士、研究人员、教师、学生、工业家、企业家和其他热衷于跟踪国家经济发展的人士的手册。最后,我要感谢所有参与编写这份经济调查报告的人员,特别是财政部经济事务和政策分析司的工作人员、尼泊尔中央银行的有关官员以及该主题的专家。同样,我要向所有在完成这项工作的过程中提供必要数据、信息和其他详细信息的职能部委、部门和其他实体表示衷心的感谢。 2009 年 7 月 苏伦德拉·潘迪 财政部长
91,否。12,2023,pp。1658-1683,doi:10.1002/prot.26609
布尔拉维尔苏伦德拉赛理工大学 (VSSUT) 成立于 1956 年,是一所以大学工程学院 (UCE) 名义成立的工程学院,旨在解决社会问题。随着印度独立后第一座多用途河流大坝希拉库德大坝的投入使用,需要本土工程师来操作和维护这座用于控制洪水的大坝、用于发电的发电站和用于灌溉大片土地的运河系统。在 68 年的时间里,该大学培养了超过 40,000 名校友。它致力于整个邦和国家的基础设施、工业增长和社会技术发展。在其校友的大力参与下,奥里萨邦修建了道路、港口、大坝、发电厂、输电线路、工业、灌溉项目和农村电气化。它一直在该地区的农村和城市发展计划中发挥着关键作用;它是邦政府项目的中央监控中心,例如 Pradhan Mantri Gramya Sarak Yojana (PMGSY)、流域项目等。它的校友遍布于领先的国有企业和私营公司的董事会;他们在印度陆军/海军/空军、DRDO 和 ISRO 中担任高级职务;他们是几乎所有 IIT、NIT 和许多外国大学的教务委员会成员。这所传奇的学院于 1956 年起步,在希拉库德大坝的临时车间里,分为土木、电气和机械三个系,各招收 30 名学生。VSSUT 目前提供 10 个 B.Tech.、22 个 M.Tech.、B.Arch.、MCA 和 3 个 M.Sc. 课程。该大学以其纯粹、不妥协的教育方法和高强度的教学而闻名。为表彰该校对社会的贡献,邦政府于 2009 年将其升级为技术大学。几乎所有的 B.Tech. 课程都获得了 NBA 认证,其余的也已申请认证。目前,该校招收了 1644 名 B.Tech、M.Tech、MSc、MCA、Ph.D. 学生,全校学生总数为 4956 名。目前,除了丰富的本科课程外,该校还在所有科学和工程学科的研究生和研究课程方面保留了强大的研究文化传统。超过 150 名研究学者正在攻读各个学科的博士学位。VSSUT 已被确定为 AICTE 质量改进计划的攻读博士学位中心,也是 AICTE 国家博士奖学金 (NDF) 计划的中心。从 2018-19 年起,博士生将根据 NDF 计划入学。 VSSUT 的机构计划或战略计划巩固了现有优势,并通过确定需要认真关注和采取独特行动的最紧迫问题,着眼于大学的未来发展道路,以及实现学院愿景的适当行动计划。鉴于社会、经济和技术变化的快速变化,大学的战略计划至关重要,需要对其进行监控和更新。
I.序言中的新空间技术和轨道上的商业机会导致了一个成倍增长且快速变化的全球空间行业。火箭发射并重新进入卫星和上层阶段,将气体和气溶胶散发到从地球表面到低地轨道的大气中的每一层。这些排放可能影响气候,臭氧水平,中层云彩,地面天文学和热层/电离层组成。空间行业的增长率令人印象深刻:发射和重新进入质量通量最近大约每三年增加一倍(Lawrence等,2022)。太空活动将继续增加到2040年的数量级(Ambrosio and Linares,2024年)。空间行业正在由大型低地轨道(LEO)卫星星座进行转换,因此到2040年计划的系统将需要每年推出10,000多颗卫星,并将其处置到大气中。由液态天然气(LNG)燃料发动机提供动力的重型升力火箭将在2040年到2040年(Dominguez等,2024)主导。空间行业排放到大气的范围和特征正在从根本上增长和变化(Shutler等,2022)。估计发射和再入气溶胶排放量表明,许多计划的大型LEO星座将需要从当前的3,500 Tyr -1增加到30,000 Tyr -1到2040年的发射吨位(Shutler等人,2022年)。火箭燃烧的排放将随着有效载荷而增加。努力。从汽化的空间碎片和用过的火箭阶段回归的排放量将从目前的每年1,000吨增加到每年30,000吨以上(Shulz and Glassmeier 2021)。到2040年,进入平流层的发射和再入颗粒物(黑碳和金属氧化物)排放的总全局通量将与自然的气象背景通量相媲美。这些估计值不包括新轨道中新空间系统的不确定但可能有重要的发射要求,例如Meo(中等地球轨道)和地理赤道轨道(地球赤道轨道),也可能是月球或火星探索的积极进程。面对太空飞行排放的构成和化学差距,发射和重新进入的排放率正在发生。对大型LNG火箭的排放和影响知之甚少。最近发现,构成天然平流层硫酸盐层的10%的颗粒中已经存在了重新进入空间碎屑的金属,这强调了迫切需要了解重新进入的即将到来的数量级如何影响大气(Murphy等人,2023年)。显而易见的是,总体上缺乏评估未来太空排放影响所需的科学和工程模型,工具和数据。小组确定了对现象的基本科学理解的关键差距,包括建模技术和知识差距:应对这些日益严重的关注,在2021年,Surendra P. Sharma博士,NASA AMES研究中心,组织和领导多机构工作组(Martin Ross博士,航空航天公司Martin Ross博士; Karen Rosenlof博士; Karen Rosenlof博士,NOAA/CSL,NOAA/CSL(NOAA/CSL)科罗拉多州哥伦比亚大学的Kostas Tsigaridis;
I. 序言 新的太空技术和轨道商业机会催生了全球航天产业的指数级增长和快速变化。火箭发射、卫星再入和上级火箭将气体和气溶胶排放到从地球表面到低地球轨道的每一层大气层中。这些排放可能会影响气候、臭氧水平、中层云量、地面天文学以及热层/电离层成分。航天产业的增长速度令人印象深刻:发射和再入质量通量最近每三年翻一番(Lawrence 等人,2022 年)。根据行业预测,到 2040 年,太空活动将继续增加至少一个数量级(Ambrosio 和 Linares,2024 年)。大型低地球轨道 (LEO) 卫星星座正在改变航天产业,因此到 2040 年,计划中的系统每年将需要发射和处置超过 10,000 颗卫星到大气层中。到 2040 年,以液化天然气 (LNG) 燃料发动机为动力的重型运载火箭预计将成为发射活动的主导 (Dominguez 等人,2024)。航天工业向大气排放的范围和性质正在急剧增长和变化 (Shutler 等人,2022)。发射和再入气溶胶排放量估计表明,到 2040 年,许多计划中的大型低地球轨道星座将需要将发射吨位从目前的 3,500 tyr -1 增加到 30,000 tyr -1 以上 (Shutler 等人,2022)。火箭燃烧排放量将与有效载荷同步增加。蒸发空间碎片和废火箭级的再入排放量将从目前的每年 1,000 吨增加到每年 30,000 吨以上 (Shulz 和 Glassmeier 2021)。到 2040 年,全球发射和再入大气层颗粒物(黑碳和金属氧化物)排放到平流层的总通量将与自然陨石背景通量相当。这些估计不包括不确定但可能很重要的发射要求,例如 MEO(中地球轨道)和 GEO(地球静止赤道轨道)等轨道上的新太空系统或积极的月球或火星探索计划。发射和再入大气层排放量的上升是在人们对航天排放的成分和化学成分存在广泛知识缺口的情况下发生的。人们对大型液化天然气火箭的排放和影响知之甚少。最近发现,重返大气层的太空碎片中的金属已经存在于构成天然平流层硫酸盐层的 10% 颗粒中,这强调了迫切需要了解未来重返大气层数量级的增加将如何影响大气(Murphy 等人,2023 年)。显然,总体上缺乏评估未来航天排放影响所需的科学和工程模型、工具和数据。知识差距:为了应对这些日益增长的担忧,2021 年,Surendra P. 博士美国宇航局艾姆斯研究中心的 Sharma 组织并领导了一个多机构工作组(航空航天公司的 Martin Ross 博士、NOAA/CSL(美国国家海洋和大气管理局/化学科学实验室)的 Karen Rosenlof 博士、科罗拉多大学 NOAA CSL 化学与气候过程组的 Chris Maloney 教授、哥伦比亚大学的 Kostas Tsigaridis 以及 GISS/NASA(戈达德空间研究中心/美国国家航空航天局)的 Gavin Schmidt 博士),在美国宇航局内部资金(地球科学部)的支持下,分析了预测发射和再入排放全球影响的模型的有效性和可信度,以及可用于验证这些模型的数据。该小组确定了对该现象的基本科学理解方面的关键差距,包括建模技术和