有时,最明显的事情需要时间才能在脑海中形成。一个例子是脱湿——润湿的反义词——几十年来,它一直出现在表面科学家的眼前,但在材料研究和质量控制中却很少被认识到是一个重要特征。自从我们在 KRÜSS 发明了 Stood-up Drop 以来,人们越来越清楚地认识到脱湿与许多表面特性和测试方法的关联,以及它在表面处理和材料分析方面的巨大潜力。在本产品概述中,了解 Stood-up Drop 作为我们液滴形状分析仪的配料附件!
网络犯罪分子正在使用Genai来增强传统的攻击方法,创建复杂的网络钓鱼活动,深层骗局,甚至利用AI进行基于语音的勒索。“通过语音的验证”解决方案被吹捧为几年前的下一件大事,在RSAC的供应商摊位中明显缺少。安全意识培训也将需要刷新:Genai可以生产网络钓鱼电子邮件,这些电子邮件不是您与笨拙的语法和错别字的经常运行;它们是针对单个或细分市场的最终调谐攻击,即使是最警惕的用户也是如此。缩放会议,电话甚至视频都有可能以先前无法想象的准确性伪造的风险。
作者:SITA Messtechnik GmbH 应用部门 André Lohse 和 Tilo Zachmann 表面上的化学和薄膜残留物会导致工业生产过程(如涂层、粘合和焊接)出现质量问题。随着质量要求的提高和向更高效生产方法的转变(如胶粘或电子束焊接 (EBW)),对清洁表面及其验证的需求也随之增加。荧光测量是一种适用且经过验证的无损表面检测方法,因为它具有灵敏度高、响应速度快和非接触式测量特点。荧光物理学荧光是冷光的一种形式。冷光是指原子或分子受激发后发光。光子发射(光)的情况称为光致发光。荧光机理如图 1 所示。为了激发荧光,用紫外线光源照射测试表面。表面任何污染物的分子都会吸收高能辐射 (1)。在光子的激发下,电子达到更高的能级(2,激发态)。激发的分子与周围环境发生碰撞,并释放出一小部分吸收的能量(3)。
图1。PEC设备的示意图,由具有金属背触点的半导体吸收器(左),金属计数器电极(右)和电解质环境(中心)组成。这个数字是基于国家可再生能源实验室NREL的约翰·特纳(John Turner)的描述,但在PEC文献中发现了各种各样的类似描述。一个特别有见地的例子是参考。20 by nozik&memming。横坐标表示这三个成分的空间分离,而纵坐标表示所涉及的电子能和电化学电位。电解质区域中的水平描绘了水分分裂的氧化还原电位,包括假定的过电势(将所需能量从1.23 eV,黑色增加到1.6-1.7 eV,蓝色箭头和水平)。(a):平移N型半导体,(b):平频p型半导体,(c):宽间隙p型C型沙尔科硫酸盐吸收器,带弯曲和束带隙朝向表面,以及(d):(d):AS(c),但对于狭窄的GAP吸收量。(d)中的红色“ x”表示孔达到水氧化电位的途径。
许可证允许 TENACIOUS 微型探测器在 2 号任务期间在月球表面运行 卢森堡——2025 年 1 月 8 日——总部位于卢森堡的月球探索和资源开发公司 ispace-EUROPE SA(ispace-EUROPE)已根据 2017 年卢森堡空间资源法获得任务授权,可以在即将到来的 ispace, inc.(ispace)2 号任务期间运行 TENACIOUS 微型探测器。该微型探测器计划于 2025 年 1 月中旬之前发射,此次批准标志着一个历史性的里程碑,因为这是欧洲首次获得授权以实现空间资源的商业利用。卢森堡经济部颁发的这项批准将 ispace-EUROPE 定位为空间资源商业化的全球领导者,并肯定了卢森堡在促进空间经济创新方面的关键作用。 TENACIOUS 微型探测车专为月球探索和资源利用而设计,它将执行关键操作,包括收集和转让月球风化层的所有权,以便 ispace-EUROPE 执行与 NASA 签署的 2020 年风化层合同。ispace-EUROPE 首席执行官 Julien Lamamy 表示:“这项授权标志着欧洲太空探索的历史性时刻,因为这是首个支持商业太空资源活动的授权。像我们这样的任务不仅取决于技术能力,还需要强大的法律框架来指导、支持和授权太空商业运营。我们非常感谢卢森堡政府的支持,他们的前瞻性政策和对太空领域的承诺对于实现 ispace 的月球雄心至关重要。借助 Tenacious,我们将朝着实现地月经济潜力和推进月球探索愿景迈出又一步。” 2017 年《卢森堡太空资源法》提供了支持商业探索和利用太空资源所需的法律框架,这是卢森堡太空经济战略的重要组成部分。通过获得这项授权,ispace-Europe 不仅推进了 Mission 2 的目标,还为欧洲未来的商业太空资源活动开创了先例。卢森堡经济、中小企业、能源和旅游部长 Lex Delles 评论道:“这项授权不仅标志着实现地月空间探索潜力的历史性一步,而且标志着我们朝着实现地月空间探索目标迈出了重要一步。”
首席执行官马克·塞尔比表示:“今天的公告确保了 32,000 英亩地表权的使用权,这是公司完成许可并朝着 2025 年克劳福德建设决策迈出的又一个关键步骤。作为地表权协议的一部分,公司将把金斯米尔镇和马比镇的 47,750 英亩采矿权(这些地方没有已知的勘探目标)转让给地表权持有人。此次转让旨在为大片土地创造未来的确定性,促进可持续林业和野生动物栖息地保护的有效发展。我们为在释放克劳福德项目和蒂明斯镍业区的潜力方面取得的进展感到自豪,建设一个有利于环境并支持子孙后代的未来。”
花朵中寄生着各种附生细菌群落,这些细菌会影响花朵的功能、传粉媒介相互作用以及植物的整体适应性。然而,人们对这些细菌的丰度如何随着花朵的衰老而变化以及这些变化与花朵寿命的关系知之甚少。在本研究中,我研究了从开花期(花蕾开放到花朵)到衰老期(花朵枯萎)的花朵生命周期中细菌丰度的变化,并探索了对花朵寿命的潜在影响。我们通过确定两个野外季节中 8 种植物花朵的平均衰老年龄来追踪花朵的年龄。花蕾在开花前被标记,使我们能够从花蕾开放的时刻(标志着花朵开花的开始)到可见枯萎的开始(表明衰老的开始)追踪花朵的寿命,我们通过平板计数确定了花朵表面可培养细菌的丰度,并测量了环境温度、湿度和降水如何影响这些模式。我们的结果表明,随着花朵的衰老,它们会积累细菌,寿命较短的花朵通常比寿命较长的花朵积累细菌的速度更快。然而,与预期相反,附生细菌的丰度与花朵寿命无关,这表明附生细菌可能不会直接影响花朵寿命。相反,环境条件起着重要作用;温度升高与细菌丰度降低有关,而湿度升高则支持细菌丰度增加和花朵寿命延长。这些发现表明,花朵上的细菌丰度可能受外部因素影响,而对花朵寿命没有直接影响,这凸显了花朵衰老与环境条件之间复杂的相互作用。
真空:月球外层由惰性气体和其他原子和分子组成,这些气体和分子从月球内部释放,源自太阳风,或由陨石和彗星尘埃形成 [4, 5]。必须考虑飞行硬件的构造所用的材料及其各自的排气特性。月球表面系统的硬件选择应遵循 NASA 热真空稳定性指南。该模块提供了此信息的资源和数据库,例如材料和工艺技术信息系统 (MAPTIS),它提供了测试材料的排气特性和热真空稳定性等级 [6]。
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制
条件和限制 本信息并非旨在构成任何形式的意见、具体指导或法律或财务建议,接收者不应从本信息或其内容中推断出此类信息。接收者不应完全依赖公告中包含的信息,而应在充分考虑所有可用信息的基础上做出决定。我们不对所提供信息的准确性、可靠性或正确性作出任何明示或暗示的保证。我们向客户提供的建议受特定条款和条件的约束,这些条款和条件优先于本文件中的任何陈述。我们和我们的官员、员工或代理人对接收者因依赖我们提供的任何信息而产生的任何损失概不负责,并在法律允许的最大范围内排除对统计内容的责任。© 2024 Arthur J. Gallagher & Co. | CRPGLOB46146