https://doi.org/10.26434/chemrxiv-2025-1z3h4 orcid:https://orcid.org/0000-0000-0002-2607-3035 consect content content content content content note content contem consect consect consect consect consect consemrxiv note content consemrxiv notect content consect consemrxiv notect content许可证:CC BY-NC 4.0
Teknofest组织的比赛鼓励年轻人探索无人的车辆技术,从而促进科学和技术进步。,它为那些渴望领导自主海洋技术发展的人提供了重要的机会。从事无人地面车辆技术的参与者将设计和开发能够成功完成任务的车队的车辆。在国防部和阿斯尔森部的领导下组织,比赛使年轻的创新者能够在未来的技术中脱颖而出。
1 Laboratory of Study of Microstructures, Onera-CNRS, University Paris-Saclay, BP 72, 92322 CHECTILLON CEDEX, France 2 University Paris-Saclay, UVSQ, CNRS, GEMAC, 78000, Versailles, France 3 Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan, KS 66506, USA 4 Laboratory of Multimate and Interfaces, UMR CNRS 5615, Univ Lyon University Claude Bernard Lyon 1, F-69622 Villeurbanne, France 5 Laboratory Mateis, UMR CNRS 5510, Univ Lyon, INSA Lyon, F-69621 Villeurbanne, France 6 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044,日本7电子和光学材料研究中心,国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本(日期:
我们提出的不同运输测量值在最近发现的重毛力超导体UTE 2中,沿着以身体为中心的原晶结构的易于磁化A轴施加了磁场。热电功率随温度高于超导过渡的温度而变化,T SC = 1。5 K,表明超导性在费米液体方向发展。作为场的函数,热电学功率显示了连续的异常,这归因于场诱导的费米表面不稳定性。这些费米 - 表面不稳定性出现在磁极化的临界值处。值得注意的是,与沿B-轴施加的磁性的第一阶metAgnetic跃迁相比,磁化强度(0.4 µ b)的磁性临界值(0.4 µ b)的最低磁场不稳定发生。低温下估计的电荷载体数量揭示了与LDA计算不同的金属基态,表明强电子相关是该化合物中的主要问题。
通过沿着液体固体界面施加热梯度而产生的热渗透流可以将其转化为将废热转化为电。虽然这种现象已近一个世纪以来一直闻名,但至关重要的是要更好地了解热渗透的分子起源。在此期间,我们首先详细介绍了热渗透的多种贡献。然后,我们展示了使用分子动力学计算热渗透系数的三种方法;一种基于界面焓过量和Derjaguin的理论框架的第一种方法,这是一种基于使用所谓的干性方法的界面熵过量的计算,以及一种新型的非平衡方法来计算在周期性通道中计算热剂量系数的方法。我们表明,这三种方法彼此对齐,尤其是对于光滑的表面。另外,对于极化的石墨烯 - 水界面,我们观察到较大的热渗透反应的变化,并且随着表面电荷的增加,流动方向的多次变化。总体而言,这项研究展示了渗透流的多功能性,并呼吁对带电表面附近热渗透行为进行实验研究。
Micro-fabricated Surface Electrode Ion Trap with 3D-TSV Integration for Scalable Quantum Computing Jing Tao 1 , Luca Guidoni 2 , Hong Yu Li 3 , Lin Bu 3 , Nam Piau Chew 1 and Chuan Seng Tan 1* 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 2 Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, France, 75205 3 Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117685 Email: tancs@ntu.edu.sg Abstract In this paper, 3D architecture for TSV integrated Si surface ion-trap is proposed, in which the TSV and microbump technology is used to connect the surface electrodes of ion trap到底部的Si插座。伪电位模拟用于确定“平面陷阱”和“ TSV陷阱”几何形状的捕获离子高度。在两种情况下均未观察到伪能力的显着偏差。初步的微型离子陷阱芯片是特征的。所提出的技术在形式和寄生降低微型表面离子陷阱方面有希望,用于可扩展的量子计算应用。(关键字:表面离子陷阱,3D TSV集成,量子计算)简介量子计算被广泛吹捧为维持对高性能计算未来需求的最有可能的技术之一。实现量子计算机的一种有希望的方法是将悬浮在真空中的原子离子用作量子位(Qubits)来执行量子操作[1]。离子被一组产生静态(DC)和射频(RF)电场的表面电极限制在自由空间中。具有适当波长的激光束用于将离子冷却到地面振动能状态,并通过解决离子的电子能态执行量子操作。现代离子陷阱芯片促进了在SI基板上制造的大量多段表面电极,以操纵高密度离子阵列或形成多个离子捕获区[2]。离子捕获技术的关键挑战之一是以可扩展的方式将不断增加的电极号互连到外部DC/RF电源。传统的电线键合方法需要在芯片表面积上设计耗尽空间的外围粘结垫设计,并且还具有从芯片外围到被困离子的激光障碍物的缺点。使用高级3D集成技术,提议将离子陷阱芯片垂直堆叠在Si插台上,在该插座机上,将通过(TSV)和微型凹凸在其中形成垂直互连以连接表面电极。图1显示了所提出的TSV积分离子陷阱模具的示意图,该陷阱堆叠在Si插孔器上,其中一个离子被困在陷阱芯片表面上方。提出的架构提供了一个微型离子陷阱系统,其优势具有高密度电极积分能力,较小的RC延迟,紧凑的外形尺寸和芯片表面激光束的清晰可访问性。
摘要:目前,在这些自动驾驶汽车上的现有传感器无法很好地检测到自动驾驶汽车之前的道路表面状况。但是,应确保白天和黑夜的天气引起的道路状况。对深度学习的调查,以识别当天的道路表面状况,是使用车辆前面嵌入式摄像头收集的数据进行的。深度学习模型仅在当天被证明是成功的,但迄今为止尚未对它们进行评估。这项工作的目的是提出深度学习模型,以检测在夜间在自动驾驶汽车前的天气造成的在线道路表面条件,其精度很高。在这项研究中,使用性能比较,将不同的深度学习模型,即传统的CNN,Squeezenet,VGG,Resnet和Densenet模型。考虑到现有夜间检测的当前局限性,本文研究了不同路面的反射特征。根据功能,夜间数据库是带有或没有环境照明的。这些数据库是从几个公共视频中收集的,以使所选模型更适用于更多场景。此外,根据收集的数据库对选定的模型进行培训。最后,在验证中,这些模型对夜间干燥,潮湿和雪道的表面条件进行分类的准确性可高达94%。
Johannes W. M. Osterrieth,James Ramper,David Madden,Nakul Rampal,Luke Skoric,Bethany Connolly,Mark。 Santos,Xian-He Sun,Hana Bunzen,Sateh C. Moreton,Jessica C. Moreton。 M. D'Alessandro,Patrick W. Dohenn,MirceaDincă,Chenyue Sun,Christian Doonan,Michael Thomas Huxley,Jack D. Evans,Paolo Falcaro。 Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sujit K. Ghosh, Soumya Mukherjee, Matthew R. Hill, Muhammed Munir Sadiq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu北川。Johannes W. M. Osterrieth,James Ramper,David Madden,Nakul Rampal,Luke Skoric,Bethany Connolly,Mark。 Santos,Xian-He Sun,Hana Bunzen,Sateh C. Moreton,Jessica C. Moreton。 M. D'Alessandro,Patrick W. Dohenn,MirceaDincă,Chenyue Sun,Christian Doonan,Michael Thomas Huxley,Jack D. Evans,Paolo Falcaro。 Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sujit K. Ghosh, Soumya Mukherjee, Matthew R. Hill, Muhammed Munir Sadiq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu北川。A. Dewitt,免费V. Lotsch。拉玛·奥克塔维安(Rama Octavian),俄罗斯莫里斯(Morris),保罗·圣惠特利(Paul St. Wheatley),纳瓦尔(Navarre Cyderius,Randall Q. Snurr,Rebecca B. Concalves,Shane Telfer,Seok J. Lee,Valska P. Ting,Van Speybroeck,Sven M. Rogge,Krista,Christ。 St. Luke W. Bingel,Stefan Wuttke,Andreo Jacopo,Omar Yaghi。
摘要 我们分析了在高能中潮沙洲海滩进行的为期 3 周的现场试验中收集的波浪诱导环流的欧拉和拉格朗日测量数据,该海滩有 500 米长的岬角和水下珊瑚礁。研究发现,波浪和潮汐条件的微小变化会极大地影响环流模式。根据离岸波浪倾角,确定了三种主要状态:(1)在沿岸正常配置下,除了低潮时的中等波浪外,流动以横岸运动为主,珊瑚礁上存在准稳定环流单元。(2)在阴影配置下,阴影区域内外分别存在流离岬角的向岸电流和弱振荡涡旋。(3)在偏转配置下,存在流向岬角并延伸到冲浪区以外的偏转裂口,中等波浪的活动在低潮时达到最大值。在 4 米斜波下,无论潮汐如何,偏转裂口都会活跃,平均深度平均速度高达 0.7 米/秒,离岸 800 米,深度 12 米,具有能量低频波动。我们的研究结果强调了偏转裂口将物质输送到远海的能力,表明此类裂口可以将沉积物输送到闭合深度之外。这项研究表明,在具有突出地质背景的海滩上,可以出现各种各样的波浪驱动环流模式,有时这些模式会共存。由于波浪和潮汐条件的微小变化,主要驱动机制可能会发生变化,从而导致环流在空间和时间上的变化比开放沙滩更大。