首次采用了生成人工智能中最新的技术来构建血浆湍流的替代模型,以实现长时间的传输模拟。拟议的步态(生成人工智能湍流)模型基于卷卷变量自动编码器的耦合,该模型将已预先计算的湍流数据编码为减少潜在的神经网络和深层神经网络,并产生新的湍流,该新的湍流是400倍的湍流,该湍流是400倍的富指向数字集成。该模型应用于谷川 - 瓦卡塔尼(HW)等离子体湍流模型,该模型与地球体流体动力学中使用的准真实性模型密切相关。在时空傅立叶和适当的正交分解光谱以及以Okubo-Weiss分解为特征的流程傅立叶和适当的正交分解光谱中,步态和HW模型之间的一致性非常好。一致性也可以在粒子位移的概率分布函数和有效的湍流扩散率中找到。
多保真替代建模旨在通过结合来自多个来源的数据来学习最高保真度的准确替代物。传统方法几乎不能扩展到高维数据。深度学习方法利用基于神经网络的编码器和解码器来提高可扩展性。这些方法在不包括相应的解码器参数的情况下共享跨保真度的编码表示。这阻碍了推理的表现,尤其是在分布外的sce-narios中,当最高的保真度数据具有限制性域覆盖范围时。为了解决这些限制,我们提出了多余的残差纽约过程(MFRNP),这是一种新型的多保真替代建模框架。mfrnp可以以最高的忠诚度为较低的保真度和地面真相的凝聚输出之间的残余模型。汇总将解码器引入分享步骤,并优化了较低的保真度解码器,以准确捕获前保和交叉信息。我们表明,MFRNP sigsig-在学习偏微分方程和现实世界中的建模任务方面表现出了最先进的表现。我们的代码在以下网址发布:github.com/rose-stl-lab/mfrnp。
此预印本的版权所有者此版本于 2021 年 4 月 21 日发布。;https://doi.org/10.1101/2021.04.20.440715 doi: bioRxiv preprint
✓ 根据他们的模型,在牲畜育种计划中使用代父技术将显著提高商业种公的遗传价值。✓ 与普通种公相比,代父技术可实现高达 6.5 至 9.2 年的遗传增益
数字孪生技术在航空航天、基础设施和汽车等各个工业领域具有广泛的应用前景、现实意义和潜力。然而,由于具体应用不明确,这项技术的采用速度较慢。本文使用离散阻尼动态系统探讨数字孪生的概念。由于数字孪生也有望利用数据和计算方法,因此在这种情况下使用代理模型是有充分理由的。在这种协同作用的推动下,我们探索了在数字孪生技术中使用代理模型的可能性。特别是,我们探索了在数字孪生技术中使用高斯过程 (GP) 模拟器。GP 具有处理噪声和稀疏数据的固有能力,因此,在数字孪生框架内使用它是有充分理由的。涉及刚度变化和质量变化的情况将单独和联合考虑,以及数据中不同程度的噪声和稀疏性。我们的数值模拟结果清楚地表明,GP 模拟器等替代模型有可能成为开发数字孪生的有效工具。分析了与数据质量和采样率相关的方面。总结了本文介绍的关键概念,并提出了未来迫切研究需求的想法。
摘要 - 电动机是电子推进系统的核心组成部分之一,在该行业中起着至关重要的作用。电动机的最佳设计提出了一个复杂的非线性问题,通常会挑战传统方法,以在准确性和效率之间取得平衡。实现准确的分析和整体优化通常需要大量的计算要求,尤其是在与大型个人打交道时。结果,研究人员开始探索数据驱动的替代模型来解决这一困境的利用。本评论论文着重于研究用于构建数据驱动的替代模型的领先技术,以协助和促进电动机的设计优化过程。这些技术包括统计模型,机器学习模型,深度学习模型和其他基于人工智能的技术。本文对基本原则进行了全面的调查,并提供了利用这些不同模型的研究的详细示例。此外,这些模型的性能和潜力都以评论为强调,从而阐明了它们各自的优势和局限性。此外,讨论了在此主题下提出的研究挑战,并有望在此主题下进行改进的途径。索引术语 - 手工智能,数据驱动的模型,深度学习,电动机,机器学习,优化,替代模型。
抽象的替代建模对于参数微分方程系统具有很大的实用性。与经典数值方法相反,使用基于物理学的深度学习方法为这种系统构造模拟器是一个有希望的方向,因为它具有处理高维度的潜力,这需要最大程度地减少训练的随机样本损失。然而,随机样品引入了统计误差,这可能成为近似和高维问题的近似值的主要误差。在这项工作中,我们提出了一种深层自适应采样方法,用于对低规范性参数微分方程的替代建模,并说明了自适应采样的必要性以构建替代模型。在参数设置中,剩余损耗功能可以视为空间和参数变量的不均衡概率密度函数(PDF)。与非参数设置相反,可以使用分解的关节密度模型来减轻参数空间引起的困难。PDF通过深层生成模型近似,从中生成新样品并将其添加到训练集中。由于新样品与残留诱导的分布相匹配,因此重新定义的训练集可以进一步减少当前近似解决方案中的统计误差
数字孪生技术在航空航天、基础设施和汽车等各个工业领域具有广泛的应用前景、现实意义和潜力。然而,由于具体应用不明确,这项技术的采用速度较慢。本文使用离散阻尼动态系统探讨数字孪生的概念。由于数字孪生也有望利用数据和计算方法,因此在这种情况下使用代理模型是有充分理由的。在这种协同作用的推动下,我们探索了在数字孪生技术中使用代理模型的可能性。特别是,我们探索了在数字孪生技术中使用高斯过程 (GP) 模拟器。GP 具有处理噪声和稀疏数据的固有能力,因此,在数字孪生框架内使用它是有充分理由的。涉及刚度变化和质量变化的情况将单独和联合考虑,以及数据中不同程度的噪声和稀疏性。我们的数值模拟结果清楚地表明,GP 模拟器等替代模型有可能成为开发数字孪生的有效工具。分析了与数据质量和采样率相关的方面。总结了本文介绍的关键概念,并提出了未来迫切研究需求的想法。
最大限度地减少代谢能量消耗 (MEE) 对提高运动障碍人士的活动能力至关重要,因为需要高能量的运动会导致活动减少。康复计划和设备使用 MEE 来确定其有效性,但由于时间延迟和非真实条件,使用间接量热法会受到限制。肌电图 (EMG) 可以深入了解肌肉如何激活;因此,本研究的目的是通过利用 EMG 信号开发实时 MEE 反馈系统。参与者以不同的步频(首选、+/- 15%、+/- 30%)完成了五种步行条件,同时收集了呼吸气体交换、地面反作用力和 EMG 信号。实时 EMG 信号被数字积分并分成步幅,然后按力成本 (COF) 系数缩放。MEE 具有先前文献中看到的预期二次关系 (R 2 = 0.967),以及 COF 数据 (R 2 = 0.701)。 EMG 方法稳定在 75.1% - 133.1% 之间,不在 MEE 的近距离范围 (90% - 110%) 内;因此,未来的研究必须研究其他数学方法。我们的结果表明 MEE 和 EMG 活动之间存在定性关联,可用于提高残疾人士的行动能力和生活质量。
a b s t r a c t这项工作引入了一种方法,可以通过将机器学习的替代模型整合到OASIS全球循环模型(GCM)中来增强3D大气模拟的计算效率。传统的GCM基于反复整合物理方程的传统GCM在一系列时间段的大气过程中进行了大气过程,这是时间密集的,导致了模拟的空间和时间分辨率的妥协。这项研究赋予了这一限制,从而在实际时间范围内实现了更高的分辨率模拟。加速3D模拟在多个域中具有显着含义。首先,它促进了将3D模型集成到系外行星推理管道中,从而从以前从JWST和JWST Instruments预期的大量数据中对系外行星进行了良好的表征。其次,3D模型的加速度将使地球和太阳系行星的更高分辨率模拟,从而更详细地了解其大气物理和化学。我们的方法用基于仿真输入和输出的训练的基于神经网络的复发模型代替了绿洲中的辐射传输模块。辐射转移通常是GCM最慢的组件之一,因此为整体模型加速提供了最大的范围。替代模型在金星大气的特定测试案例上进行了训练和测试,以基准在非生物大气的情况下基于这种方法的实用性。这种方法产生了令人鼓舞的结果,与在一个图形处理单元(GPU)上相比,与使用匹配的原始GCM在金星样条件下相比,在一个图形处理单元(GPU)上表明,ABO V E 99.0%的精度和147个速度的因子。
