摘要:电垂直起飞和着陆(EVTOL)飞机代表了一种关键的航空技术,以改变未来的运输系统。EVTOL飞机的独特特征包括降低噪声,低污染物的发射,有效的操作成本和灵活的可操作性,同时,这对先进的电力保留技术构成了关键的挑战。因此,由于EVTOL起飞过程中的巨大功率需求,最佳起飞轨迹设计至关重要。传统的设计优化,但是,以迭代方式采用高保真模拟模型,从而产生了计算密集型机制。在这项工作中,我们实施了一个支持替代物的倒数映射优化体系结构,即直接预测设计要求(包括飞行条件和设计约束)的最佳设计。经过训练的逆映射替代物执行实时最佳EVTOL起飞轨迹预测,而无需运行优化;但是,一个培训样本需要在此反映射设置中进行一个设计优化。反向映射的过度训练成本和最佳EVTOL起飞轨迹的特征需要开发回归生成的对抗网络(Reggan)代理。我们建议通过转移学习(TL)技术进一步增强Reggan的预测性能,从而创建一种称为Reggan-TL的方案。在这项工作中,发电机采用设计要求作为输入并产生最佳的起飞轨迹配置文件,而歧视器则在培训集中区分了生成的配置文件和真正的最佳配置文件。尤其是,提议的核根方案利用了由发电机网络和鉴别器网络组成的生成对抗网络(GAN)架构,并具有均一平方误差(MSE)和二进制跨透镜(BC)的组合损失,用于回归任务。综合损失有助于双重方面的发电机培训:MSE损失目标是生成的概况和培训对应物之间的最小差异,而BC损失则驱动了生成的配置文件,以与训练集共享类似模式。我们证明了Reggan-TL在空中客车A 3 Vahana的最佳起飞轨迹设计上的实用性,并将其与代表性替代物的性能进行了比较,包括多输出高斯工艺,条件gan和Vanilla Reggan。结果表明,Reggan-TL仅使用200个训练样本,而最佳参考替代物需要400个样本,达到了99.5%的概括精度阈值。培训费用减少了50%,降低了Reggan-TL实现的概括准确性的标准偏差,证实了其出色的预测性能和广泛的工程应用潜力。