结果:端口在整个队列中没有显着提高生存率,在SEER队列中,中位总生存期为38个月(p = 0.56),中国人群中的39个月(p = 0.75)。然而,在免疫疗法亚组中,中国队列表明,免疫疗法与港口的生存率显着改善(p = 0.044)。多数COX回归分析表明,患者50-59岁的患者(HR = 5.93,95%CI:1.67-21.06)和95%(95%),95%(HR CI:3.04-39.56)与年龄<50岁的患者相比,生存风险增加。此外,YPT3-4阶段患者的风险比YPT1-2阶段的患者更高(HR = 2.12,95%CI:1.14-3.93,P = 0.017)。在CT3-4分期中,观察到类似的趋势,R1/R2和无免疫疗法。淋巴结转移也显示出与生存风险的进行性关系,患者分类为YPN1(HR = 1.90),
KGH 洗手机位于二楼 Connell 2(左图)。要从员工入口到达那里,请沿着主走廊走,然后在进入“麻醉科”之前右转。请确保您有员工身份徽章,因为您将在机器上刷卡以借用洗手服。请勿刷卡(这不起作用!)。每位学生一次最多可以借用 5 件上衣/裤子。使用过的洗手服的归还站位于 Connell 2 的同一走廊中,位于日间手术室对面的窗户旁边(中间图片)。要找到手术室,请继续沿着有洗手机的走廊走下去,左侧会有一组双开门(右图)。它应该离洗手机不太远。注意:如果 Connell 2 的洗手机没有您可用的尺寸,则在 Connell 5 的电梯旁边还有第二台洗手机。
糖尿病在具有并发症的高收入和低收入国家中越来越普遍(1-3)。它可能导致微血管(肾病,视网膜病和神经病)和宏 - 血管并发症(4-6)。除了管理高血糖外,糖尿病患者还需要临床监测和评估其他危险因素,并管理并发症的潜在预测因素(6-8)。糖尿病神经病的发病率正在增加,即使撒哈拉以南非洲人的现有病例相对降低(9)。糖尿病神经病(DNP)是糖尿病最常见的并发症(10,11)。根据在拉丁美洲进行的系统审查,其患病率在2型DM和1型糖尿病中的患病率在7.0%至34.2%之间的范围为34.5%(6)。尽管大约一半的糖尿病患者无症状对于DNP,但大多数患者都会出现麻木,刺痛,疼痛和无力,导致全世界造成残疾的残疾(12-15)。它会因慢性疼痛,跌倒,肢体截肢和足部溃疡而导致的生活质量。DNP的这些表现进一步导致睡眠障碍,焦虑和抑郁(6,10,15)。糖尿病神经病是低收入和高收入国家的全球医疗保健问题(16,17)。估计每30秒在世界某个地方,由于糖尿病神经病而进行下肢截肢(18)。糖尿病神经病是全球施加社会经济负担和残疾的糖尿病并发症的迅速增长(7,19 - 21)。IT占足迹溃疡的80%,50-60%的非创伤肢体截肢(15)。糖尿病患者中糖尿病神经病的汇总患病率在全球22%至46.5%(6)范围内。在非洲和埃塞俄比亚,它分别在22-66%至52.2 - 53.6%之间,分别患有糖尿病神经病(22-24)。由于诊断迟到,筛查和诊断资源的不足,对血糖的控制不佳,健康支出不足,医疗资源短缺以及缺乏质量糖尿病护理的增加,发展中国家的糖尿病神经病的患病率和发生率很高(20,22)。在黑狮医院进行的一项研究表明,糖尿病神经病是主要的糖尿病并发症,
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
生物信息学和化学中的进步和应用2025:18 1 1©2025 Dove Medical Press。这项工作由Dove Medical Press Limited发布和许可。本许可的完整条款可在https://www.dovepress.com/ terms.php上获得,并合并了创意共享归因 - 非商业(无体现,v3.0)许可证(http://creativecommons.orgn.org/licenses/byby-nc/3.0/)。通过访问您接受条款的工作。只要工作正确地归因于Dove Medical Press Limited,允许未经Dove Medical Press Limited的任何进一步许可就允许进行工作。 有关此工作商业使用的许可,请参阅我们条款的第4.2和第5段(https://www.dovepress.com/terms.php)。允许未经Dove Medical Press Limited的任何进一步许可就允许进行工作。有关此工作商业使用的许可,请参阅我们条款的第4.2和第5段(https://www.dovepress.com/terms.php)。
摘要目的:评估CDK4/6抑制剂对红细胞平均红体体积(MCV)变化的影响及其与无进展生存率(PFS)和总生存期(OS)的可能相关性。研究设计:观察性研究。研究的地点和持续时间:2020年1月至2023年1月之间,Turkiye的Kahramanmaras Necip Fazil City医院医学肿瘤学系。方法论:回顾性分析了74例HR(+)HER2( - )转移性乳腺癌患者的数据。MCV和其他全部血数指标。在三个月后进行了第一次治疗评估。计算了治疗基线后第三个月的中位ΔMCV值。结果:患者都是女性,中位年龄为55岁(35至80岁)。在治疗之前,基线中值MCV水平为90.4(最小值:77.3-113.2)。三个月后,中位MCV水平为95(最小值:84.3-115.3)。7.15是中位ΔMCV水平。关于PFS(16.53 vs. 15.26个月)(p = 0.13)和OS(21.46 vs。17.83个月(p = 0.08),在ΔMCV≥7.15的组与ΔMCV<7.15的组之间没有统计学上的显着差异。结论:CDK4/6抑制剂导致MCV增加,但PFS或OS之间没有明显的差异和MCV的增加。发现MCV的上升是否代表预后或预测标记,需要进一步的研究。
根据环境条件的不同,轻型软机器人可以表现出难以建模的各种运动模式。因此,优化其性能很复杂,尤其是在多个空气和流体动力学过程影响其运动时,以低雷诺数为特征的小型系统中。在这项工作中,我们通过将实验结果应用于两种进化算法中的适应性功能来研究水下游泳者的运动:粒子群优化和遗传算法。由于可以迅速制造具有不同特征(表型)的柔软,轻型机器人,因此它们为优化实验提供了一个很好的平台,使用实体机器人竞争,以提高连续一代的游泳速度。有趣的是,就像在自然进化中一样,意外的基因组合导致了令人惊讶的良好结果,包括速度增加了数百%或发现自我振荡的水下运动模式。
1,大学,法国80000 Amiens的De Picardie Jules Vernnes, 1肿瘤科; refeno.valery@chu-amiens.fr 2 Oncology Department, Profeseur Za fi saona Gabriel Hospital, University is de Mahajanga, Mahajanga 401, Madagascar 3 Facult é de M è dozen, university is from Antananarivo, Antananarivo 101, Madagascar 4 Sorbonne Universit é s, Umpc Univ. 巴黎06,UMR 7371,UMR S 1146,Laboratoire d'AstimageriebiomèDicale,75005 Paris,法国,法国5 AP-HP,H h'Pital Saint Louis,肿瘤学单元,1 Avenue Claude Vellefaux,75010 Paris,France,France; safae.terrisse@aphp.fr(S.T。 ); clement.bonnet@aphp.fr(c.b. ); clement.dumont@aphp.fr(c.d. ); Stephane.culine@aphp.fr(S.C.)6医学肿瘤学系,取消研究所是Rogie de l'Ouest,44800,法国圣汉堡; ludovic.doucet@ico.unicancer.fr 7医学肿瘤学系,Claudius Regaud研究所,IUCT-O,法国图卢兹31300; pouesssel.damien@iuct-oncopole.fr *通信:michele.lamuraglia@upmc.fr或lamuraglia.michele@chu-amiens.fr1肿瘤科; refeno.valery@chu-amiens.fr 2 Oncology Department, Profeseur Za fi saona Gabriel Hospital, University is de Mahajanga, Mahajanga 401, Madagascar 3 Facult é de M è dozen, university is from Antananarivo, Antananarivo 101, Madagascar 4 Sorbonne Universit é s, Umpc Univ.巴黎06,UMR 7371,UMR S 1146,Laboratoire d'AstimageriebiomèDicale,75005 Paris,法国,法国5 AP-HP,H h'Pital Saint Louis,肿瘤学单元,1 Avenue Claude Vellefaux,75010 Paris,France,France; safae.terrisse@aphp.fr(S.T。); clement.bonnet@aphp.fr(c.b.); clement.dumont@aphp.fr(c.d.); Stephane.culine@aphp.fr(S.C.)6医学肿瘤学系,取消研究所是Rogie de l'Ouest,44800,法国圣汉堡; ludovic.doucet@ico.unicancer.fr 7医学肿瘤学系,Claudius Regaud研究所,IUCT-O,法国图卢兹31300; pouesssel.damien@iuct-oncopole.fr *通信:michele.lamuraglia@upmc.fr或lamuraglia.michele@chu-amiens.fr
作者:劳拉·隆巴迪(Tenaya Therapeutics)Amara Greer-Short(Tenaya Therapeutics)Anna Greenwood(Tenaya Therapeutics)Elena Leon(Tenaya Therapeutics)Tawny Qureshi(Tenaya Therapeutics) Emilee Easter(Tenaya Therapeutics)Jin(Tenaya Therapeutics)Jaclyn Ho(Tenaya Therapeutics)Stephanie Stephanie(Tenaya Therapeutics)Marie Cho(Tenaya Therapeutics)Charles Feathers(Tenaya Therapautics)琼斯(Tenaya Therapeutics)Chris Alleyne-Levy(Tenaya Therapeutics)Jun Liu(Tenaya Therapeutics)Frank Jing(Tenaya Therapeutics)William Prince(Tenaya Therapeutics)Jianmin Lin(Tenaya Therapeutics) (Tenaya Therapeutics)疗法)