摘要。背景/目的:TYRO3 是受体酪氨酸激酶 TAM 家族 (TYRO3、AXL 和 MERTK) 的成员。虽然已报道了激活的 AXL 和 MERTK 在白血病细胞生长中的作用,但 TYRO3 的影响尚未确定。因此,我们研究了 TYRO3 敲低对白血病细胞系生长的影响。材料和方法:本研究使用了三种表达 TYRO3 蛋白的人类白血病细胞系 (纯红细胞白血病衍生的 AA、OCI/AML2 和 K562)。为了诱导 TYRO3 敲低,使用电穿孔系统转染针对 TYRO3 的小干扰 RNA (siRNA)。通过比色测定评估细胞生长。通过免疫印迹检查各种信号蛋白的表达水平和激活。通过微阵列分析检查 TYRO3 敲低后综合基因表达的变化。结果:TYRO3 敲低抑制了所测试的白血病细胞系中的细胞生长。此外,敲低还抑制了 AA 细胞中的信号转导和转录激活因子 3 的磷酸化,以及 AA 和 OCI/AML2 细胞中的细胞外信号调节激酶 (ERK) 1/2;两者都是 TYRO3 信号传导的下游分子。TYRO3 敲低还抑制了所有细胞系中 survivin 的表达。TYRO3 敲低强烈抑制了 TYRO3 mRNA 表达,但没有抑制 AXL 和 MERTK 的表达。此外,TYRO3 敲低抑制了 ERK 下游分子细胞周期蛋白 D1 mRNA 的表达。结论:TYRO3 在白血病细胞生长中发挥作用,是白血病的潜在治疗靶点。
最初在杆状病毒中发现的凋亡蛋白(IAP)的抑制剂存在于从病毒到酵母再到人类的生物体中[1]。的特征是存在一到三个串联杆状病毒IAP重复序列(bir; a of。80 amino acid zinc finger motif ), there are currently eight human IAPs: neuronal apoptosis inhibitory protein (‘NAIP'), cellular IAP1, cellular IAP2, X-linked IAP (XIAP), melanoma-associated–IAP (‘ML- IAP'), IAP-like protein-2 (‘ILP-2'), survivin and BRUCE (BIR重复含泛素 - 偶联酶)(在[2]中进行了综述)。顾名思义,家庭的创始成员可以预防昆虫和哺乳动物细胞中的凋亡刺激[3,4]。在多种细胞过程中提出了进一步的IAP作用,包括对细胞分裂的控制[5],以及许多不同的信号级联反应,例如转化生长因子β激活,C-JUN N末端激酶调节和核因子κB激活已提出涉及XIAP [6-8]。尽管有上述可能性,但最容易证明的XIAP功能是直接的caspase抑制剂。在人IAP中,XIAP是胱天蛋白酶和凋亡中最有效的抑制剂。例如,几个组显示了人XIAP直接抑制胱天蛋白酶3、7和9(在[2,9]中进行了综述)。XIAP包含三个串联BIR结构域,其次是C端环(非常有趣的新基因)域。XIAP的解剖尚未揭示第一个BIR结构域的功能(BIR1)。然而,具有N端连接器的第二个BIR结构域(BIR2)是必要的,并且足以抑制密切相关的executioner caspase 3和7 [4,10,11],而第三个BIR域(BIR3)负责抑制启动器caspase 9 [10,12]。
摘要目的:过继转移、离体扩增的多抗原靶向 T 细胞 (multiTAA-T) 代表了一种新的、潜在有效且无毒的乳腺癌 (BC) 治疗方法。在这项首次人体试验中,我们研究了向复发/难治/转移性 BC 患者施用靶向肿瘤表达抗原 Survivin、NY-ESO-1、MAGE-A4、SSX2 和 PRAME 的多 TAA T 细胞的安全性和临床效果。材料和方法:多 TAA T 细胞产品是从接受过大量治疗的所有亚型转移性或局部复发性不可切除 BC 患者的外周血中生成的,并以 2 × 10 7 /m 2 的固定剂量水平输注。患者间隔 4 周接受两次细胞输注,并确定安全性和临床活性。细胞在门诊环境中施用,并且未经淋巴细胞清除化疗。结果:所有患者均患有雌激素受体/孕激素受体阳性的 BC,其中一名患者还患有人类表皮生长因子受体 2 阳性。没有治疗相关毒性,输注耐受性良好。在接受并输注多 TAA T 细胞的 10 名接受过大量治疗的患者中,9 名病情出现进展,而一名接受过 10 种疗法的患者病情稳定时间延长(5 个月),这与针对靶抗原的 T 细胞体内扩增和持续存在有关。此外,在 7/10 名接受多 TAA 输注后的患者中观察到抗原扩散和针对一系列非靶向肿瘤抗原的 T 细胞内源性激活。结论:多 TAA T 细胞耐受性良好,并可诱导难治性 BC 患者的病情稳定。这与体内 T 细胞扩增、持续存在和抗原扩散有关。这种方法的未来方向可能包括其他策略,以增强多 TAA T 细胞对 BC 患者的治疗效果。
目的:结直肠癌 (CRC) 是导致癌症死亡和发病率的主要原因之一。迫切需要找到对抗 CRC 的策略。APC 或 β -catenin 的驱动基因突变在 CRC 的发生和进展中起重要作用。在本研究中,我们联合应用 CRISPR/Cas9-sgRNA 系统和单链寡脱氧核苷酸 (ssODN) 作为模板来纠正结肠癌细胞系 HCT-116 中存在的 β -catenin 的杂合 Δ TCT 缺失突变。该方法为癌症的基因治疗提供了一种潜在的策略。方法:构建 Cas9/β -catenin-sgRNA-eGFP 共表达载体并与 ssODN 共转染到 HCT-116 细胞中。通过 FACS 分选突变校正的单细胞克隆,并通过 TA 克隆和 DNA 测序进行判断。通过实时定量PCR、Western印迹、CCK8、EDU染色和细胞接种克隆检测CRISPR/Cas9介导的校正效果。此外,还分析了裸鼠异种移植瘤中细胞克隆衍生肿瘤的生长情况。结果:CRISPR/Cas9介导的β-catenin突变校正导致TCT序列的存在和Ser45处磷酸化β-catenin的重新表达,从而恢复了磷酸化β-catenin的正常功能,包括减少核β-catenin的运输和下游c-myc、survivin的表达。在β-catenin突变校正的细胞中观察到细胞生长显著减少。移植了突变校正的HCT-116细胞的小鼠的肿瘤大小明显小于未校正的异种移植瘤。结论:本研究数据表明,通过 CRISPR/Cas9 和 ssODN 的组合来纠正驱动突变可以极大地改善癌细胞系的生物学行为,表明该策略在癌症基因治疗中具有潜在的应用价值。关键词:CRISPR/Cas9、ssODN、靶向基因编辑、β-catenin、结肠癌