由于 Gadag II-A Transmission Ltd. 与印度中央输电公用事业有限公司于 2022 年 11 月 18 日签订的输电服务协议中发生某些不可抗力事件,输电线路/项目调试延迟,因此“卡纳塔克邦 Gadag 太阳能区 (1500 MW) 输电计划:A 部分第二阶段”下输电线路的 SCOD 延长。申请人:Gadag IIA Transmission Limited (GIIATL) 答辩人:印度中央输电公用事业有限公司 (CTUIL) 及其他方。听证日期:2024 年 10 月 7 日 会议成员: Shri Jishnu Barua,主席 Shri Ramesh Babu V.,成员 Shri Harish Dudani,成员 出席各方: Shri Vishrov Mukerjee,律师,GIIATL Shri Swapnil Verma,CTUIL Shri S. Vallinayagam,律师,TANGEDCO 会议记录 请愿人的法律顾问表示,提交本请愿书的主要目的是寻求将 Gadag PS-Koppal PS 400 kV D/c 线路的计划商业运营日期 (SCOD) 从 2024 年 5 月 17 日延长至该线路的实际开始运营日期,因为发生了某些不可抗力事件,即: (i) 根据《2003 年电力法》第 164 条授予批准的延迟,以及 (ii) 由于请愿人在建设该线路时面临严重的通行权 (RoW) 问题而导致的延迟,这种情况一直持续到今天。律师进一步表示,委员会已在之前的命令中将这些事件认定为不可抗力事件。律师表示,由于存在迫在眉睫的威胁,即 CTUIL 可能会因该线路的调试延迟而兑现请愿人根据输电服务协议提交的履约银行担保 (PBG),请愿人正在祈求对 CTUIL 发出临时指示,在请愿书最终处理完毕之前不要兑现 PBG。律师指出,随着 400 kV Gadag PS-Narendra(新)D/c 线路和 2×500 MVA、400/220 kV Gagad PS 在 Gadag 一期工程于 2024 年 9 月 4 日投入使用,以及 Gadag 二期 PS 和相关线路舱的准备就绪,可再生能源的输送将不再存在瓶颈。2. 被告 CTUIL 的代表和被告 TANGEDCO 的律师请求给予时间就此事提交各自的答复。3. 考虑到律师和当事人代表的意见,委员会指示如下:
项目位置的名称 - 项目技术支持物品IIIAbhijit Beura 07/12/97 2。Arup Ghosh 02/05/84 3。atin sasmal 09/08/97 4。Barsha Maity 26/06/97 5。Bidisha Dawn 16/08/99 6。Debapriya Sanyal 27/05/01 7。derabati mishh 25/12/88 8。Debmalya Ghosh 01/10/889。DPAK BARIK 17/11/96 10。Dipu Mondal 01/04/98 11。Garima Ranjj 10/05/99 12。Indranil Mondal 28/10/92 13。Joy Narayan Sarkar 14/08/00 14。Khushboo Kumari 29/10/95 15。Kuntal Ghosh 24/03/83 16。Mausam Kumari 21/12/97 17。Niviksha Bhattacharjee 24/07/97 18。Payel Chanda 31/03/98 19。Pyali Dutta 22/02/90 20。Pratima Biswas 06/05/99 21。Pritha Chowdury 06/11/97 22。purnabrata袋28/08/88 23。Ritika Bandyopadhyay 15/05/00 24。Sambit Baliarsingh 06/07/00 25。Sanchita Ghosh 10/02/99 26。Sangam Roy 20/11/97 27。Semeanta Paul 21/05/95 28。shubha prajapati 10/05/93 29。SK SHEH MD 00/05/97 30。Sneha Sanjay Pail 03/03/01 31。Somita Kumuma 05/08/95 32。Soumya Kar 14/02/00 33。Sudeshna Mandal 28/01/94 34。Sumana Jana 09/07/98 35。Sussmita Dhah 10/12/95 36。Swapnil Chakraborty 14/02/01 37。Tania Chatterjee 05/03/00 38。•面试当天无需携带您的原始文件。Tridib Roy 20/08/96•上述候选人被要求在2024年1月13日下午1:30在AIIMS Kalyani礼堂大楼的地下进行书面考试。•请携带一张政府发行的照片身份证•请以规定格式携带一份自我调查的文档副本和申请表。Jayeeta Bhowmick博士
海得拉巴,2024年8月10日:Amara Raja先进的细胞技术(ARACT),这是印度领先的工业和汽车电池专业领先的工业和汽车电池专业之一Amara Raja Energy&Mobility Limited的子公司之一,是其客户合格工厂(CQP)的大型工厂(CQP)的大型工厂,并在MASTERN diflistry and Indentn and Sonement Sonement in Fundertring sonement and Sonement。活动有杰出的嘉宾参加,包括史蒂文·凯(Steven CAI),董事会成员兼欧洲主席(EMEA);迭戈·格拉菲(Diego Graffi),CMD Piaggio车辆印度,Ashish Jangale,副总裁和SSU Mahindra&Mahindra负责人,Swapnil Jain,联合创始人Ather Energy,Jayadev Galla,董事长兼董事总经理Jayadev Galla是&M; ARE&M的执行董事Harshavardhana和Vikramadithya Gourineni;与政府和工业的其他贵宾一起。电池组工厂的第1阶段以1.5 gwh的目前容量为单位。工厂制造的锂离子电池组专门适合印度条件,并将向主要的EMS提供,并用于文具存储需求。CQP将按照下一个财政年度的第1季度将其运行,可以生产各种单元格类型,以进行客户测试和验证。该项目最近在AS&M与Gotion Inobat(GIB)合作以解决技术,制造和定制解决方案之后获得了Fillip。散布在260英亩土地上的Giga走廊将需要投资950亿卢比,直到2031年,并将包括先进的电池制造Gigafactory以及电池组合设施。它最近也签署了一个带有Ather Energy的谅解备忘录。此外,该公司还在海得拉巴建立了一家善良的高级能源研究和创新中心,被称为Epostive Energy Labs。与CQP的电池组合工厂和CQP的奠基石铺设仪式一起,Amara Raja与Piaggio签署了一份谅解备忘录(MOU)。作为本协议的一部分,Amara Raja将与Piaggio Vehicles Private Limited合作开发和供应LFP(磷酸锂)锂离子(Li-ion)细胞和充电器,并为其EV 3 Wheelers以及发育中的电池和电池组以及即将在本地生产的2weeler提供的开发电池和电池组。在这种情况下,Chaiman兼董事总经理Amara Raja Energy&Mobility的Jayadev Galla先生在Amara Raja说:“我们的任务一直是建立为越来越多的人提供更好机会的机构。今天的开创性仪式表示该地区的变革性旅程的开始。这不仅是一个仪式的里程碑,而且是我们战略倡议的开始,旨在通过Gigacorridor为当地青年创造可持续的非移民工作机会。我们深表感谢在这项企业中坚定地支持Telangana政府。”
Stuart J. Mumford ∗ 1,2,3,Nabil Freij 4,Steven Christe 5,Jack Ireland 5,Florian Mayer 6,V。KeithHughitt 7,Albert Y. Shih 5,Daniel F. Ryan 8,5,Simon Liedtke 6,Simon Liedtke 6,Simon Liedtke 6,Simon Liedtke 6,daviderez-suárez9 IK 12,BrigittaSipőcz13,Rishabh Sharma 6,Andrew Leonard 3,David Stansby 14,Russell Hewett 15,Alex Hamilton 6,Laura Hayes 5,Asish Panda 6,Matt Earnshaw 6,Matt Earnshaw 6,Nitin Choudhary Choudhary 16,Ankit Kumar 6,Ankit Kumar 6,Ankit Kumar 6,Prateek Chanda Chanda 17 17,M.Chanda 17,M.Chanda 17,M.Md,M.D. Akramul Haque 18 , Michael S Kirk 11 , Michael Mueller 6 , Sudarshan Konge 6 , Rajul Srivastava 6 , Yash Jain 19 , Samuel Bennett 6 , Ankit Baruah 6 , Will Barnes 20 , Michael Charlton 6 , Shane Maloney 21 , Nicky Chorley 22 , Himanshu 6 , Sanskar Modi 6 , James Paul Mason 6 , Naman9639 6 , Jose Ivan Campos Rozo 23 , Larry Manley 6 , Agneet Chatterjee 24 , John Evans 6 , Michael Malocha 6 , Monica G. Bobra 25 , Sourav Ghosh 24 , Airmansmith97 6 , Dominik Stańczak 26 , Ruben De Visscher 6 , Shresth Verma 27 , Ankit Agrawal 6 , Dumindu Buddhika 6 , Swapnil Sharma 6 , Jongyeob Park 28 , Matt Bates 6 , Dhruv Goel 6 , Garrison Taylor 29 , Goran Cetusic 6 , Jacob 6 , Mateo Inchaurrandieta 6 , Sally Dacie 30 , Sanjeev Dubey 6 , Deepankar Sharma 6 , Erik M. Bray 6 , Jai Ram Rideout 31 , Serge Zahniy 5 , Tomas Meszaros 6 , Abhigyan Bose 6 , André Chicrala 32 , Ankit 6 , Chloé Guennou 6 , Daniel D'Avella 6 , Daniel Williams 33 , Jordan Ballew 6 , Nick Murphy 34 , Priyank Lodha 6 , Thomas Robitaille 6 , Yash Krishan 6 , Andrew Hill 6 , Arthur , 阿比盖尔·L·史蒂文斯 39, 40, 阿德里安·普莱斯-惠兰 41, 安巴尔·梅赫罗特拉 6, 阿尔谢尼·库斯托夫 6, 布兰登·斯通 6, 特朗·基恩·当 42, 伊曼纽尔·阿里亚斯 6, 菲昂拉格·麦肯齐·多佛 1, 弗里克·维斯特林格 36, 古尔山·库马尔 43, 哈什·马图尔 44, 伊戈尔·巴布施金 6, 杰伦·温比什 6, 胡安Camilo Buitrago-Casas 6 , Kalpesh Krishna 45 , Kaustubh Hiware 46 , Manas Mangaonkar 6 , Matthew Mendero 6 , Mickaël Schoentgen 6 , Norbert G Gyenge 47 , Ole Streicher 48 , Rajasekhar Reddy Mekala 6 , Rishabh Mishra 6 , Shashank Srikanth 43 , Sarthak Jain 6 , Tannmay Yadav 49 , Tessa D. Wilkinson 6 , Tiago MD Pereira 50, 51 , Yudhik Agrawal 12 , jamescalixto 6 , yasintoda 6 , 和 Sophie A. Murray 52
摘要本研究的目的是开发hesperidin植物体的配方,表征和体内抗糖尿病评估。使用卵磷脂45毫克制备制剂,精确称重的胆固醇15 mg,将其溶解在10 mL氯仿中,在圆底烧瓶(RBF)中,并进行10分钟的浴室超声处理。使用旋转蒸发器将有机溶剂除去45-50摄氏度。完全去除溶剂后形成的磷脂混合物薄层。Hesperidine旋转蒸发器用于在37-40°C下进行一小时的水合。透射电子显微镜用于检查植物体的形态。被应用于400个网状碳涂层的铜网格后,使用1%W/V磷酸烟酸对植物体分散剂进行负染色。使用Malvern Mastersizer S Laser衍射尺寸分析仪(Malvern Instruments Ltd.,UK)检查植物体的尺寸分布。使用文献中先前描述的方法,评估了体内抗糖尿病活性。Wistar大鼠,并将其保存在动物屋设施中,并带有12小时的浅色和黑暗周期。使用自动异性腔中的诊断试剂盒(ERBA诊断曼海姆,德国)用于估计生化参数。选择F1和F2批次作为最佳配方,然后根据形态(数字照片和TEM),粒径和封装效率进行进一步评估。囊泡范围从100 nm到500 nm不等。F1和F2植物体的平均大小分别为109.71和133.24 nm。在某些地区,胰岛和腺泡细胞(外分泌组织)之间的外围扩大较小。现在,两个单元都彼此接近,表明恢复正常。总而言之,基于植物体的公式可能是提高治疗功效,较低剂量和增强剂量方案的有用策略。为了要求其抗糖尿病特性,必须确认更多涉及人类受试者的研究。关键字:配方,表征,体内,抗糖尿病评估,hesperidin,植物体如何引用本文:Borkar S,Swapnil Goyal。配方,发育,表征和体内抗糖尿病植物体的抗糖尿病评估。国际药物输送技术杂志。2024; 14(4):2244-48 doi:10.25258/ijddt.14.4.41支持来源:nil。利益冲突:无引入,而“有些”是指类似细胞的,“ phyto”是指植物。1植物体是囊泡药物输送系统,可改善低溶剂的药物吸收和生物可利用性。1,2植物提取物和磷脂酰胆碱(或任何亲水极性头组)对形成植物体反应,它们是磷脂的复合物,并且天然存在的活性植物化学物质结合在其结构中。3,4与常见制剂相比,这些配方显示出更好的药理和药代动力学特征。亲水性植物核酶 - 胆碱络合物完全被脂溶性磷脂酰基部分覆盖。),例如多酚。高药物封装,更好的稳定性(在两亲分子的植物构成和极性头部之间形成化学键,5和改善的生物利用度6只是植物体的令人印象深刻的优势。唯一可以掺入植物体结构的植物化学物质是包含活性氢原子(-COOH,-OH,-NH2,-NH等)的植物化学物体。两亲分子的亲水部分和草药衍生物可以建立与
背景:有针对性的药物输送系统(TDDSS)是革命性的系统,可提高药物科学领域的治疗剂的功效和安全性。这些系统的目的是仅将药物输送到需要它的目标部位,从而增强治疗结果,同时避免不必要的全身副作用。动作机制:TDDSS通过不同的机制(例如生物缀合和纳米颗粒技术的利用)促进了特定于现场的药物。一方面,叶酸靶向的递送利用叶酸受体在癌细胞上的过表达来增加治疗剂的内在化。此外,TDDS也可以设计为对某些刺激的反应,例如pH,温度甚至酶活性,从而可以控制和延长药物解放。优于传统系统的优点:TDDSS比传统系统具有一定的好处,其优点是毒性降低,增强生物利用度和提高患者依从性。这些系统通过最大程度地减少不必要的脱靶效应,同时最大化靶标的药物浓度来增强治疗指数并降低剂量频率。挑战和未来的方向:TDDS方法可能会导致药物输送和治疗方面的突破,从而在医疗保健领域开放新的机会。目前的努力旨在优化纳米载体,采用智能交付策略以及增强个性化医学方法。创新有可能将TDDS的应用扩展到各种治疗区域,从癌症治疗到疫苗开发和基因输送。结论:TDDSS的持续进展正在彻底改变现代医学,为多样性疾病提供更安全,有效和高度特定的治疗策略。
一种用于分析盐酸imeglimin的新方法,已经开发了一种口服抗糖尿病剂,并使用高性能薄层色谱(HPTLC)对散装和片剂形式进行了验证。该方法利用特定比例的丙酮,甲醇,甲苯和甲酸和甲酸的流动相。在244 nm的光密度扫描的硅胶TLC板上实现了色谱分离,该药物显示出明显的吸光度。验证遵循ICH Q2R1指南,证明了线性,准确性,精度(内部和时间间),检测极限(LOD),定量极限(LOQ)和鲁棒性的令人满意的结果。校准曲线在1000-5000 ng/band的浓度范围内线性,回归方程为y = 2.9501x + 3834.2,相关系数(R²)为0.9942。精确研究表明,日期和日期变化的较低%RSD值,确认可靠性。LOD和LOQ分别为1074.928 ng/lot和3257.54 ng/spot。恢复研究证明了该方法的准确性,在不同的尖峰水平下,恢复值的百分比接近100%。鲁棒性测试表明该方法对实验条件的较小,故意变化的弹性,在2%的可接受极限内恢复%。开发的HPTLC方法提供了一种简单,具有成本效益和可靠的手段,用于定量分析药品配方中的盐酸含Imeglimin。