量子计量学通过使用适当定制的量子态和检测策略,有望实现超越经典极限的测量精度。然而,由于难以生成高质量的大规模探测器,扩大这一优势在实验上具有挑战性。在这里,我们构建了一个光子装置,通过以相干控制顺序执行的操作来操纵探测器的动态,从而实现增强的精度缩放。我们的装置以相干控制顺序应用未知的旋转和已知的轨道角动量增加,以一种方式重现涉及由离散变量和连续变量生成的门的混合量子开关。当光子经历 2 mθ 的旋转和 2 l ℏ 的角动量偏移时,未知的旋转角 θ 的测量精度为 1 / 4 ml。实际增强因子高达 2317,当使用 7 . 16 × 10 7 时,我们实验中的最终精度为 0 . 0105 ′′
1。Solar Powered PoE solution .................................................................................................................................... 3
摘要 — 速度效率、内存优化和量子抗性对于保障云计算环境的性能和安全性至关重要。全同态加密 (FHE) 通过在无需解密的情况下对加密数据进行计算来满足这一需求,从而保护数据隐私。此外,基于格的 FHE 是量子安全的,可以防御潜在的量子计算机攻击。然而,当前 FHE 方案的性能仍然不令人满意,主要是因为操作数的长度和与几个资源密集型操作相关的计算成本。在这些操作中,密钥切换是最苛刻的过程之一,因为它涉及在更大的循环环中进行计算所需的复杂算术运算。在这项研究中,我们介绍了一种新算法,该算法在密钥切换的数论变换 (NTT) 中实现了线性复杂度。该算法提供了与最先进算法相当的效率,同时显著简单且消耗更少的 GPU 内存。值得注意的是,它将空间消耗减少了高达 95%,对 GPU 内存非常友好。通过优化 GPU 性能,我们的实现与基线方法和当前最先进的方法相比实现了高达 2.0 倍的加速。该算法有效地平衡了简单性和性能,从而增强了现代硬件平台上的加密计算,并为云计算环境中更实用、更高效的 FHE 实现铺平了道路。
这里有一些示例,说明如何错误地测量输入和输出电压会影响效率。如果电池充电器的输入电流为2a,但是从适配器到电池充电器输入引脚的电阻为100MΩ,那么影响是什么?欧姆定律,这是从适配器到输入引脚的200mv下降。假设效率为92%。如果输入引脚实际上是5V,则适配器为5.2V,并且电池在4V/2.3a时充电,则记录的效率约为88.5%,使用5.2V适配器电压,如公式2所示。对零件热性能的评估产生巨大影响。第二,以相同的示例(92%的效率,5V/2A输入,4V/2.3A电池),但现在使测量的电池电压3.8V在电池端子处。这是87mΩ的下降,使计算的效率为87.4%,如公式3所示。
线粒体通透性过渡孔(MPTP)是一个超分子通道,可调节跨cristae膜的溶质交换,在线粒体功能和细胞死亡中具有执行作用。MPTP对正常生理学的贡献仍然存在争议,尽管证据表明在区分祖细胞中的线粒体内膜重塑中MPTP。在这里,我们证明对MPTP电导的严格控制形成了代谢机制,因为细胞向造血身份转移。经历了内皮到山摩托型过渡(EHT)的细胞紧密控制MPTP的主要调节元件。在EHT期间,在造血性承诺之前,成熟的动脉内皮限制了MPTP活性。在细胞身份过渡后,MPTP电导恢复。在用NIM811治疗的子宫治疗中,NIM811是一种分子,该分子阻止了MPTP对通过环蛋白D(CYPD)开放的敏化,在造血前胞菌中扩增氧化磷酸化(OXPHOS),并增加了Embryo中造血性的造血性。此外,分化多能干细胞(PSC)在CYPD基因敲低PPIF后,更大的线粒体Cristae和造血活性的组织更大。相反,OPA1的敲低是适当的Cristae结构至关重要的GTPase,会诱发Cristae不规则性并损害造血。这些数据阐明了一种调节造血前体中线粒体成熟的机制,并强调了MPTP在获得造血命运中的作用。
能够引发 RNA 干扰 (RNAi) 的小干扰 RNA (siRNA) 药物已成为一种有前途的药物,能够抑制细胞内与疾病相关的基因的表达。然而,将它们送入正确的细胞却极具挑战性,因此只能用于治疗特定器官的疾病。这使得大量的潜在靶点尚未开发,而实现这些靶点的大部分努力都集中在开发新的递送系统,以帮助 siRNA 药物到达正确的器官。Switch Therapeutics 希望通过不同的方法开辟新的靶点空间,即在 siRNA 药物中构建一个分子“开关”,使它们能够在递送后仅在所需细胞中启动活性。将基因沉默限制在特定细胞(例如仅受疾病影响的细胞)可以降低脱靶效应的风险并改善治疗效果。Switch 的联合创始人在加州理工学院、希望之城和哈佛大学进行了多年的合作研究,才将他们最初的想法发展成一项技术。 Switch Therapeutics 首席执行官兼联合创始人 Dee Datta 表示:“最终,这三家机构围绕该平台生成了令人信服的数据,现在是时候考虑如何将其提升到一个新的水平了。”Switch Therapeutics 于 2023 年初凭借 5200 万美元的 A 轮融资脱颖而出。该公司正在研究一种可编程的 siRNA 分子,名为 CASi(条件激活 siRNA)。CASi 将单链和双链 RNA 的特征结合成一个三链分子。其中两条链是 siRNA 本身。第三条链是 siRNA 的第三条链。
摘要:我们提出了一个透明的回忆录,具有粗面(RS)底部电极(BE),对气体的性能和可靠性增强,该气体是气体传感器加上备忘录及其在本文中的应用。透明的回忆录具有RS BE,表现出低的形成电压(0.8 V)和稳定的电阻切换行为,具有较高的耐力,ON/OFF比率约为125。这种改进是由于对电场分布的更好控制和氧气空位浓度在应用于透明的回忆录时的氧气空位浓度所致。长时间维持在环境空气环境中的传导丝的稳定性对于将备忘录作为气体的应用至关重要。带有RS的回忆录证明了维持稳定状态的能力,约为10 4 s。结果,可以证明,带有RS的拟议透明透镜可以显着提高该设备对气体应用的可靠性。
在在线模式下,该设备直接或直接通过Cisco Smart许可实用程序(CSLU)从Cisco Smart Software Manager(CSSM)请求许可证。CSSM将SMART许可证授权代码(SLAC)直接或通过CSLU返回到产品实例(PI)。如果设备接收授权代码,则设备上的智能代理将此授权代码存储在篡改信任的商店中,您可以启用该功能。如果您安装了授权代码并且不启用该功能,则当您启动设备时,设备上的智能代理将尊重存储在受信任商店中的验证代码。该设备无需再次从CSSM请求授权代码,您可以启用该功能。
疾病背景 偏头痛是一种头痛,其特征是头部一侧反复发作中度至重度抽痛或搏动性疼痛。 1 疼痛是由脑膜(保护大脑和脊髓的 3 层膜)和头皮内的脑血管壁内的神经纤维激活引起的。 2 未经治疗的偏头痛发作可持续 4 小时至 72 小时。 1 其他常见的偏头痛症状可能包括恶心、呕吐和对光线、噪音和气味的敏感性。 1 日常体力活动、运动,甚至咳嗽或打喷嚏都会加剧疼痛。 1 偏头痛最常发生在早晨,尤其是在醒来的时候。 1 然而,偏头痛可能在一天中可预测和不可预测的时间发生。 1 不同的因素会增加患偏头痛的风险,包括情绪、压力、劳累过度、天气或环境的突然变化、强烈的气味或烟雾、巨大或突然的噪音、睡眠过多或过少、晕动病、低血糖、不吃饭、明亮或闪烁的灯光。1,2
摘要:我们预测磁性铬基过渡金属二硫属化物 (TMD) 单层在其 Janus 形式 CrXTe(其中 X = S、Se)中具有非常大的自旋轨道扭矩 (SOT) 能力。Janus 结构固有的结构反演对称性破坏导致巨型 Rashba 分裂产生较大的 SOT 响应,相当于在非 Janus CrTe 2 中施加 ∼ 100 V nm −1 的横向电场所获得的响应,这完全超出了实验范围。通过对精心推导的 Wannier 紧束缚模型进行传输模拟,发现 Janus 系统表现出与最有效的二维材料相当的 SOT 性能,同时由于其平面内对称性降低,还允许无场垂直磁化切换。总之,我们的研究结果表明,磁性 Janus TMD 是超紧凑自感应 SOT 方案中终极 SOT-MRAM 设备的合适候选者。关键词:自旋轨道扭矩、过渡金属二硫属化物、二维材料、范德华铁磁体
