摘要:在口服微生物毒素中,甲烷抗素的质量(M. assiliense)的研究次数少于良好的特征和培养的甲烷素甲烷素的Oralis和甲烷抗素的甲烷素化剂。M. assiliense与不同的口服病理相关,并与一种严重的牙周炎中与Synergistetes细菌Permidobacter Piscolens(P. piscolens)共隔离。在这里,报道另外两个坏死性纸浆病例,有机会表征两个共培养的M. assiliense分离株,均为P. piscolens,均为p. piscolens,为非运动,1-2- µ m长,0.6-0.8- µm-m-m宽gram-lam-wide gram-strosity coccobaccilli,它们在420 nmms中自动燃料。两个整个基因组序列具有31.3%的GC含量,无间隙为1,834,388-Base Pair染色体,表现为85.9%的编码率,编码甲酸甲酸盐脱氢酶,促进M. assiliense M. assiliense M. assiliense M. assiliense生长,而无需GG培养基中的氢。这些数据为理解与P. piscolens及其在口腔病理中的作用的共生性,跨性别的关联铺平了道路。
卡伦堡工业共生症是组织间合作的一个很好的例子,展示了工业生态和循环经济原理。自1960年代以来,当地公司就建立了材料和能源交流网络,将废物和副产品转变为互惠互利系统中可重复使用的资源。该模型不仅减少了废物和温室气体的排放,而且还可以大量节省能源和原材料成本。此共生的主要参与者包括Asnæs发电厂等公司,例如Novo Nordisk,Novozymes和Statoil。这些组织交换热量,蒸汽,石膏和生物质的流量,创建了一个集成的网络,其中一个公司的废物成为另一个公司的资源。工业共生大大降低了CO 2排放,并节省了数百万立方米的水以及每年的残留材料。本研究说明强调,信任和组织间合作对于这种循环经济模型的成功至关重要,同时认识到其在其他地区的应用将需要针对当地条件量身定制的调整。关键词:循环经济,工业生态学,工业共生,组织间合作,卡伦堡(丹麦),互助,供应链简介
摘要:工业共生 (IS) 和生物经济 (BE) 的概念都侧重于减少对不可再生资源的依赖。然而,这两个参考框架很少被视为实现可持续发展的联合战略的一部分。在这里,我们在有据可查的 IS 案例研究中描述了它们如何相互作用,以确定有机副产品的当前协同模式、它们的局限性以及实现每个框架各自目标的综合举措的有希望的途径。我们首先评估了当前实践中协同作用的性质,以及它们如何促进可持续发展。其次,我们关注农业在这些共生中的作用,因为它在循环生物经济中起着根本性的作用。我们使用三个主要维度来分析我们的案例研究:IS 的出现、协同治理和参与者的偶然性。我们确定了 IS 中有机物质使用的三种主要模式,我们将其称为代谢资源、代谢生物精炼厂和全球生物精炼厂。我们的观察表明,内部和外部从业者都低估了与农业的协同作用。我们得出的结论是,虽然 BE 和 IS 的结合可以增强可持续性,但它需要一个尚未构想的专门实施战略。
在所谓的第二波人工智能 (AI) 浪潮中,数据驱动的复杂机器学习方法取得了明显进步,这促进了人们对 AI 在人类生活、实践和社会各个领域和方面的应用潜力的探索。人工智能领域最近的大部分成功来自于在图像、文本和语音识别或战略棋盘和视频游戏等任务中使用表示学习和端到端训练的深度神经网络模型。通过实现自动特征工程,深度学习模型大大减少了对领域专家知识的依赖,优于基于手工特征工程的传统方法,并且在某些方面达到了与人类相当甚至超越人类的性能。尽管取得了突出的进步和潜在的好处,但对基于深度学习的 AI 解决方案的黑箱性质和行为背后缺乏透明度的担忧阻碍了它们在我们社会中的进一步应用。为了在我们的日常生活和实践中完全信任、接受和采用新兴的人工智能解决方案,我们需要以人为本的可解释人工智能 (HC-XAI),它可以为算法行为和结果提供人类可理解的解释,从而使我们能够在人工智能应用的整个生命周期内控制并不断提高其性能、稳健性、公平性、可追溯性、透明度和可解释性。遵循这一动机,多元化和多学科研究界最近出现的趋势是基于以人为本的人工智能方法的探索和情境解释模型的开发,推动人类智能 (HI) 和人工智能 (AI) 的共生,这构成了下一波(第三波)人工智能的基础。
基于人工智能的结构健康监测的专利计量分析 Pradnya DESAI 1,*、Sayali SANDBHOR 2,*、Amit Kant KAUSHIK 3、Ajit PATIL 4、Vaishnavi DABIR 5 1 研究学者,土木工程系,共生技术学院,共生国际(同等大学),印度浦那。 2 副教授兼土木工程系主任,共生技术学院,共生国际(同等大学),印度浦那。 3 助理教授,建筑与建筑环境系,诺森比亚大学纽卡斯尔,英国 4 助理教授兼土木工程系主任,DYPU,印度浦那。 5 美国佐治亚州 Green Cube Consulting LLC 首席顾问 * 通讯作者:sayali.sandbhor@sitpune.edu.in , pradnya.desai.phd2022@sitpune.edu.in
全体会议:解决营养挑战研讨会场地的跨学科方法:SIU礼堂共同主席:1。Raman Gangakhedkar博士,SIU 2。NSI演讲者NIN兼前任主席Kamala Krishnaswamy博士:整体健康:食品和补品作为治疗教授Janusz Jankowski教授,伦敦大学伦敦大学学院荣誉临床教授(UCL),英国跨学科的跨学科方法,以定义营养和饮食学院的医学和饮食学院,以确定约翰·库尔帕德(Dr.孟买塔塔信托基金会班加罗尔高级顾问的圣约翰研究所。Sanjeev Kapoor先生,厨师硕士兼主席,SIU食品系统方法的要求,以满足不断增长的人口的营养需求
弧形菌根(AM)共生是地球上最古老,最广泛的相互关系,涉及植物和土壤真菌,属于肾小球菌属。一个复杂的分子,细胞和遗传发展程序可实现伴侣的识别,植物组织中的真菌适应以及激活共生功能,例如磷酸化的转移,以换取碳水化合物和脂质。Am真菌作为古老的义务生物营养,已经发展了策略,以规避植物防御反应,以保证一种亲密而持久的互助。它们是那些能够提高植物应对产生胁迫的能力的根相关的微生物之一,导致菌根引起的抗性(MIR),这可以在不同的宿主和不同攻击者中有效。在这里,我们检查了AM真菌在殖民地定植期间以及MIR在地下和地上有害生物和病原体上的MIR开始和显示MIR时的植物不可分割的基础机制。了解MIR效率频谱及其调节对于将这些有益微生物在可持续作物保护方面的生物技术应用运输至关重要。