CL 中存在许多逻辑,例如命题逻辑、一阶逻辑 (FOL)、时间逻辑、道义逻辑等,每种逻辑都针对特定领域。例如,时间逻辑能够推理时间中的事件,道义逻辑支持推理许可/禁止及其情况,而 FOL 则是通用的。此外,不同的逻辑存在不同的推理规则。一些是演绎的——从前提中得出结论,一些是归纳的——从几个前提——结论示例中寻找一般规则,而另一些是溯因的——推测哪些前提导致了某些结论。最后,当某些推理规则存在解决策略时,它可以转换成某种软件结构,并用于为智能系统提供自动推理能力。这种软件通常被称为逻辑编程 (LP) 范式的一部分。
符号和亚符号代表人工智能 (AI) 的两个主要分支。人工智能领域在 20 世纪 50 年代取得了巨大进步并确立了地位,在此之前,McCulloch 和 Pittes 做出了一些最著名和开创性的工作,他们在 1943 年建立了神经网络 (NN) 的基础,而 Turing 的工作则在 20 世纪 50 年代引入了机器智能测试,即图灵测试。自发明以来,该领域的发展经历了起起伏伏,俗称人工智能季节,其特点是“夏季”和“冬季”。这些起伏的具体时期尚不清楚,但是,我们根据维基百科和 Henry Kautz 在 AAAI 2020 上的演讲 1“第三个 AI 夏天”采用了中间惯例。我们在图 1 中展示了这些发展的时间表。第一个 AI 夏天,也称为黄金时代,始于 AI 诞生几年后,它基于对解决问题和推理的乐观态度。直到 20 世纪 80 年代,主导范式都是符号 AI。这时,亚符号 AI 开始占据主导地位并受到关注,直到最近几年。两种不同方法之间存在长期而未解决的争论。然而,不同人工智能领域之间的这场较量即将结束,因为我们目前正在经历第三次人工智能之夏,其中主导浪潮是
稿件收到日期为 2022 年 4 月 11 日;修订日期为 2022 年 6 月 30 日;接受日期为 2022 年 9 月 2 日。当前版本日期为 2022 年 10 月 17 日。Denis Kleyko 的工作部分得到了欧盟“地平线 2020”研究与创新计划(根据玛丽居里资助协议 839179)的支持,部分得到了美国国防高级研究计划局 (DARPA) VIP(超高清项目)和 AIE(HyDDENN 项目)计划的支持,部分得到了空军科学研究办公室 (AFOSR)(资助编号为 FA9550-19-1-0241)的支持,部分得到了英特尔 THWAI 计划的支持。 Pentti Kanerva 的工作部分由 DARPA 的 VIP(超高清项目)和 AIE(HyDDENN 项目)计划资助,部分由 AFOSR(拨款 FA9550-19-1-0241)资助。Bruno A. Olshausen 的工作部分由 DARPA 的 VIP(超高清项目)和 AIE(HyDDENN 项目)计划资助,部分由 AFOSR(拨款 FA9550-19-1-0241)资助,部分由英特尔的 THWAI 计划资助。Jan M. Rabaey 的工作部分由 DARPA 的 VIP(超高清项目)和 AIE(HyDDENN 项目)计划资助。 Dmitri A. Rachkovskij 的工作部分由乌克兰国家科学院资助,资助编号为 0120U000122、0121U000016、0122U002151 和 0117U002286;部分由乌克兰教育和科学部资助,资助编号为 0121U000228 和 0122U000818;部分由瑞典战略研究基金会 (SSF) 资助,资助编号为 UKR22-0024。Friedrich T. Sommer 的工作部分由英特尔的 THWAI 计划资助,部分由 NIH 资助,资助编号为 R01-EB026955,部分由 NSF 资助,资助编号为 IIS-1718991。 (通讯作者:Denis Kleyko。)Denis Kleyko 就职于美国加州大学伯克利分校红木理论神经科学中心,加利福尼亚州伯克利市 94720,同时还就职于瑞典研究机构智能系统实验室,瑞典希斯塔 16440(电子邮箱:denis.kleyko@ri.se)。
摘要。使用具有符号表示的深度学习方法生成结构化的音乐,这是一项艰巨的任务,因为音乐元素之间的复杂关系定义了音乐构成。音乐的象征性表示,例如MIDI或乐谱音乐,可以通过以允许操纵和分析的格式编码音乐来帮助克服其中的一些挑战。但是,音乐的象征性表示仍然需要对音乐概念和理论的解释和理解。在本文中,我们提出了一种方法,该方法利用多代理系统(MAS)和强化学习(RL)进行象征性音乐生成。我们的模型主要集中于Music结构。它以较高的抽象水平运行,使其能够捕获长期的音乐结构和依赖性。我们将RL用作学习范式,人类用户作为音乐专家,以促进代理商对全球依赖和音乐特征的学习。我们展示了RL代理如何学习和适应用户的喜好和音乐风格。此外,我们介绍并讨论了在音乐发电领域中进行代理学习和适应和分布问题解决方案的方法的潜力。
Clifferd 群是由 Hadamard 门、cnot 门和 Phase 门生成的酉群的有限子群。该群在量子纠错、随机基准测试协议和纠缠研究中起着重要作用。这里,我们考虑寻找实现给定 Clifferd 群元素的短量子电路的问题。我们的方法旨在最小化假设全到全量子比特连接的纠缠门数。首先,我们考虑基于模板匹配的电路优化,并设计 Clifferd 特定的模板,利用分解 Pauli 门和交换门的能力。其次,我们引入一种符号窥孔优化方法。它的工作原理是将整个电路投影到一小部分量子比特上,然后通过动态规划以最佳方式重新编译投影的子电路。将选定的量子比特子集与剩余量子比特耦合的 cnot 门用符号 Pauli 门表示。通过软件实现这些方法,可以找到距离 6 量子比特最优仅 0.2% 的电路;与 Aaronson–Gottesman 标准形式相比,最多 64 量子比特的电路中的两量子比特门数量平均减少了 64.7% [ 3 ]。
符号和亚符号代表人工智能 (AI) 的两个主要分支。人工智能领域在 20 世纪 50 年代取得了巨大进步并确立了地位,在此之前,McCulloch 和 Pittes 做出了一些最著名和开创性的工作,他们在 1943 年建立了神经网络 (NN) 的基础,而 Turing 的工作则在 20 世纪 50 年代引入了机器智能测试,即图灵测试。自发明以来,该领域的发展经历了起起伏伏,俗称人工智能季节,其特点是“夏季”和“冬季”。这些起伏的具体时期尚不清楚,但是,我们根据维基百科和 Henry Kautz 在 AAAI 2020 上的演讲 1“第三个 AI 夏天”采用了中间惯例。我们在图 1 中展示了这些发展的时间表。第一个 AI 夏天,也称为黄金时代,始于 AI 诞生几年后,它基于对解决问题和推理的乐观态度。直到 20 世纪 80 年代,主导范式都是符号 AI。这时,亚符号 AI 开始占据主导地位并受到关注,直到最近几年。两种不同方法之间存在长期而未解决的争论。然而,不同人工智能领域之间的这场较量即将结束,因为我们目前正在经历第三次人工智能之夏,其中主导浪潮是
摘要 抽象能力是成功掌握 FHNW(Fachhochschule Nordwestschweiz)商业信息技术课程 (BIT) 的关键。面向对象 (OO) 就是一个例子 - 它广泛需要分析能力。为了测试与 OO 相关的能力,我们根据 Blackjack 场景开发了一份针对未来学生和一年级学生的问卷 (OO SET)。OO SET 的主要目标是识别在没有大量培训的情况下可能在 OO 相关模块中失败的学生群体。对于数据的解释,使用了 Kohonen 特征图 (KFM),它现在在数据挖掘和探索性数据分析中非常流行。但是,与所有亚符号方法一样,KFM 缺乏对其结果的解释和说明。因此,我们计划在现有算法的基础上添加一个“后处理”组件,该组件为集群生成命题规则,并有助于提高招生和教学过程中的质量管理。通过这种方法,我们通过在机器学习和知识工程之间架起一座桥梁,协同整合符号和亚符号人工智能。
研究文章|赚取象征性增强剂的行为/认知计算机制https://doi.org/10.1523/jneurosci.1873-23.2024收到:2023年10月2日被修订:2024年2月27日接受:2024年4月11日,2024年4月11日版权所有©20224 Burk burk et al。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
人工智能(AI)在近几十年来取得了巨大的进步,由神经网络和象征性推理系统的进步提供支持。神经网络从数据中获得学习模式,在图像识别,自然语言处理和自动驾驶等任务中取得突破。另一方面,符号推理系统为逻辑推理和知识表示提供了结构化的,基于规则的框架,使其非常适合需要解释性,概括性和解释性的域。但是,这些范式通常是孤立地运行的,当面对需要强大的学习能力和逻辑推理的任务时,会导致局限性。本文探讨了神经符号AI的新兴领域,该领域试图将神经网络和象征性推理整合到统一的框架中,克服了它们各自的缺点并在AI开发中解锁了新的可能性。
