摘要 我们在此讨论在量子计算机上处理量子多体问题时与其对称性相关的一些方面。回顾了与对称性守恒、对称性破缺和可能的对称性恢复有关的几个特点。在简要讨论了一些与多粒子系统相关的标准对称性之后,我们讨论了在量子分析中直接编码某些对称性的优势,特别是为了减少量子寄存器大小。然而众所周知,当自发对称性破缺发生时,使用对称性破缺状态也可以成为一种独特的方式来纳入特定的内部相关性。这些方面是在量子计算的背景下讨论的。然而,只有当最初破缺的对称性得到适当恢复时,才能精确描述量子系统。介绍了几种在量子计算机上执行对称性恢复的方法,例如,通过 Grover 算法净化状态、结合使用 Hadamard 测试和 oracle 概念、通过量子相位估计和一组迭代独立的 Hadamard 测试进行对称性过滤。
两个量子系统之间的单向非互易相互作用通常用级联量子主方程来描述,并依赖于时间反转对称性 (TRS) 的有效破坏以及相干和耗散相互作用的平衡。在这里,我们提出了一种获得非互易量子相互作用的新方法,它与级联量子系统完全不同,并且通常不需要破坏 TRS。我们的方法依赖于任何马尔可夫林德布拉德主方程中存在的局部规范对称性。这种新型量子非互易性有许多含义,包括一种在目标量子系统上执行耗散稳态酉门操作的新机制。我们还引入了一种新的、非常通用的基于量子信息的度量来量化量子非互易性。
引言 — 对称性是自然界的一个重要方面,在物理学中起着基础性的作用 [1,2]。诺特定理指出,汉密尔顿量的对称性与相关物理系统中的守恒量相对应 [3]。汉密尔顿量的对称性表明存在超选择规则 [4,5]。在量子计算和信息领域,对称性可以指示资源的存在或缺乏 [6],并且它有助于提高变分量子算法的性能 [7-10]。通过消除与守恒量相关的自由度,对称性的识别可以简化计算——这是诺特定理的核心。这使得对称性在物理学中非常有用。量子计算是一个相当年轻的研究领域。量子计算机最初作为图灵机的量子力学模型 [ 11 ] 被提出,其魅力在于有可能超越经典计算机。量子计算机最明显的优势在于其计算背后固有的物理原理,包括叠加和纠缠等非经典特性。随着希尔伯特空间规模的扩大,量子系统的经典模拟很快变得难以处理,需要指数级增长的比特来探索多个量子比特自然占据的状态空间。直观地说,这些计算机的量子力学性质允许以直截了当的方式模拟量子系统(参见 [ 12 ] 及其参考文献)。一个相关的例子是哈密顿模拟 [ 13 ],它引起了该领域的浓厚兴趣 [ 14 – 17 ]。已经做了大量工作来理解如何在量子硬件上模拟这些动态,以便有效地实现它们;然而,据我们所知,目前还没有可以在量子计算机上测试汉密尔顿对称性的算法,尽管以这种方式模拟汉密尔顿量和识别汉密尔顿量的对称性都被认为是至关重要的。在本文中,我们给出了量子算法来测试汉密尔顿量演化是否关于离散有限群的作用对称。该性质通常被称为演化的协方差 [18]。如果演化是对称的,那么汉密尔顿量本身也是对称的,因此我们的算法可以测试汉密尔顿对称性。此外,我们表明,对于具有可有效实现的幺正演化的汉密尔顿量,我们可以在量子计算机上有效地执行我们的第一个测试 [17]。这里的“有效”是指在 100 秒内完成计算所需的时间。
固定翼 UAV 设计通常相对于纵向平面对称,即机身左侧与右侧对称。目的是使广义气动力对称,以便在任一方向转弯时具有等效机动能力。为了确定给定机身设计的力,工程师通常会收集风洞测试或飞行实验中捕捉力的数据。无论哪种情况,我们都会期望力的大小相等,以对称使用执行器并镜像对称平面上的相对速度。然而,当力和力矩测量设备的坐标轴与机身固定坐标系的坐标轴不对齐时,收集到的数据并非如此(通常情况如此)。这种不对称随后会传递到已识别的模型,并可能对基于模型的控制造成问题,而这正是我们所针对的用例。通过仔细的安装程序可以将错位保持在较小水平,这样就可以通过适当的后处理校准剩余的不对称性。然而,似乎没有一种系统性的校准方法来做到这一点
固定翼 UAV 设计通常相对于纵向平面对称,即机身左侧与右侧对称。目的是使广义气动力对称,以便在任一方向转弯时具有等效机动能力。为了确定给定机身设计的力,工程师通常会收集风洞测试或飞行实验中捕捉力的数据。无论哪种情况,我们都会期望力的大小相等,以对称使用执行器并镜像对称平面上的相对速度。然而,当力和力矩测量设备的坐标轴与机身固定坐标系的坐标轴不对齐时,收集到的数据并非如此(通常情况如此)。这种不对称随后会传递到已识别的模型,并可能对基于模型的控制造成问题,而这正是我们所针对的用例。通过仔细的安装程序可以将错位保持在较小水平,这样就可以通过适当的后处理校准剩余的不对称性。然而,似乎没有一种系统性的校准方法来做到这一点
然而,在光电设备中,PB对应物的高性能,最近的努力,尤其是在CS 2 Agbibr 6双PSK上,[2]证明了它们在太阳能电池的广泛应用中的强大用途,[3-9] [3-9]光探测器,[10,11] x射线检测器,[10,11] X射线检测器[12] memristors [13] Memristors [13] 13]。[14] Moreover, when passing from the 3D double PSK toward its layered counterparts with two (2L) or one (1L) octahedra layers by introducing large A-site organic cations, such as butylam- monium (BA) or propylammonium (PA), allowed to develop new two-dimensional (2D) materials with tunable optoelec- tronic properties, such as the character of the bandgap as well as带隙的能量从≈2eV到≈3eV,这与无机晶格的失真有关。[15–19]尺寸还原也明显提高了候选人的ON/OFF比率,从10 2(CS 2 Ag-Birb 6至3d)到10 7(((Ba)2 Csagbibr 7),因为在扭曲的晶体结构中,离子迁移受到离子迁移的青睐。[20]从(Ba)2 Csagbibr 7中获得了具有较大迁移率的产物的X射线光绘制器,其中敏感性取决于晶体的尺寸(八面体层的数量)。[21,22]光电探测器的时间响应可以通过尺寸减小来增强,同时保持相似的检测率; [23]
摘要:我们探索如何构建量子电路,通过将给定汉密尔顿量显式编码到电路中来计算对称子空间内给定汉密尔顿量对应的最低能量状态。我们创建显式酉和变分训练酉,将由定义子空间中的 ansatz A(oL) 输出的任何矢量映射到对称空间中的矢量。对参数进行变分训练以最小化能量,从而将输出保持在标记的对称值内。该方法针对使用旋转和反射对称的自旋 XXZ 汉密尔顿量和使用 S 2 对称的 S z = 0 子空间内的 % 汉密尔顿量进行了测试。我们发现变分训练的酉在深度非常低的电路中给出了良好的结果,因此可用于在近期量子计算机中准备对称状态。
近年来,人们通过巧妙的路线/方法合成了分子内富勒烯,即将几种低质量分子(如 H2、HD、HF、H2O、CH4)封装在富勒烯笼内,这些方法涉及复杂的化学和物理过程,如被称为分子手术的多步有机合成程序。[1–7] 人们随后利用各种光谱技术对这种轻分子内富勒烯进行了研究,例如红外/远红外 (IR/FIR)、非弹性中子散射 (INS)、核磁共振 (NMR)、X 射线衍射,发现它们表现出独特和非常规的性质,因为捕获分子动力学具有高度量子性,特别是在低温实验条件下的证据。[3,8–16] 此外,其中一些物质也因潜在的长期应用而受到关注
当以产品状态初始化的量子系统受到相干或非相干动力学的影响时,其任何连接分区的熵一般都会随着时间而增加,这表明(量子)信息不可避免地会在整个系统中传播。本文表明,在存在连续对称性和普遍存在的实验条件下,由于相干和非相干动力学的竞争,对称解析信息传播受到抑制:在给定量子数区,熵会随着时间而减少,这表明动力学净化。这种动力学净化连接了两个不同的短时间区和中时间区,分别以对数体积和对数面积熵定律为特征。它是对称量子演化的通用现象,因此发生在不同的分区几何和拓扑以及(局部)刘维尔动力学类中。然后,我们开发了一种基于随机幺正工具箱的协议来测量合成量子系统中对称性解析的熵和负性,并使用来自捕获离子实验的实验数据证明了动态净化的普遍性 [ Bry- dges et al. , Science 364, 260 (2019) ] 。我们的工作表明,对称性作为放大镜在表征开放量子系统中的多体动力学方面起着关键作用,特别是在嘈杂的中尺度量子装置中。
Buhrman,Cleve和Wigderson(stoc'98)表明,对于每个布尔函数f:{ - 1,1,1,1,1,1,1,1} n→{ - 1,1,1,1}和g∈{and 2,xor 2},有界的 - error-error-error量量子通信的量子f for f o(q q q o q o q o(q q(q f)q q o q q o q q for n q o(q q q o q o q o q(q) f的复杂性。这是通过使用一轮O(log n)量子的通信来实现每个查询的Alice来实现F的最佳量子查询算法。这与经典环境形成鲜明对比,在经典环境中,很容易显示R CC(f o g)≤2r(f),其中r cc和r分别表示有界的 - 误差通信和查询复杂性。Chakraborty等。 (CCC'20)表现出一个总功能,需要BCW模拟中的log n开销。 这确定了一个令人惊讶的事实,即在某些情况下,量子减少本质上比经典降低更昂贵。 我们以多种方式改善了它们的结果。Chakraborty等。(CCC'20)表现出一个总功能,需要BCW模拟中的log n开销。这确定了一个令人惊讶的事实,即在某些情况下,量子减少本质上比经典降低更昂贵。我们以多种方式改善了它们的结果。