- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。
许多过程需要准确的速度控制。顾名思义,Synrm是同步电动机,在没有编码器的情况下总是以参考速度运行,几乎没有错误。即使是感应电动机逆变器中最佳的滑动综合系统也永远无法匹配synrm的精度。有时您的应用程序可能需要您以慢速运行电动机,例如以少于40 rpm的速度运行。如果您使用的是Synrm,并且您的驱动器无法提供必要的扭矩,则可能会绊倒。这意味着您可能会在问题调试时停机。ABB驱动器即使没有速度传感器,也可以完全控制速度至零速度。
摘要:脱碳需求要求建立近 100% 的可再生电力,从而对电网形成 (GFM) 能力提出要求。前述范式从同步交流系统转变为基于转换器的系统,该系统需要在提供 GFM 服务的同时保持稳定和自同步。然而,正如本文在引言中分析的那样,实现这些目标不可避免地需要在风力涡轮机中实现 PLL 控制器和储能,而风力涡轮机不适合在弱能量系统中运行。为了解决这个问题,提出了一种新颖的电网形成方法。建议的想法是在电网侧转换器中创建一个模拟惯性响应的直流电压控制器,并在发电机侧转换器中应用转子动能存储 (RKES) 控制器。此外,提出了一种 RKES 控制器和传统低电压穿越 (LVRT) 的协调控制器,以提高动态性能并在瞬态过程中保持电网形成能力。提供广泛的建模、基于半物理平台的实验结果和实际风电场示范项目来验证所提出的控制方法。结果证明了所提出的方法应用于未来 100% 可再生电力的有效性。
总统政策指令 40 (PPD-40),“国家连续性政策”,要求所有行政部门和机构 (D/A) 提供“重建能力,以便从灾难性紧急情况中恢复并恢复正常运营”。PPD-40 还要求 D/A“制定连续性计划,包括权力下放和重建”。这一要求强调了重建计划与 D/A 的连续性计划完全同步的重要性。确保完全同步的计划需要连续性经理、重建经理以及连续性和重建团队之间的协调。组织级重建计划有几个组成部分,某些活动必须在稳定状态 [或事件前] 和连续性操作期间执行,而不仅仅是在灾难性事件发生后。
极限周期振荡器之间的同步可以通过夹带到外部驱动器或通过相互耦合而产生。在经典同步系统中研究了两种机制之间的相互作用,但在量子系统中没有研究。在这里,我们指出,由于量子系统中的相位拉力和相位排斥,这两种机制之间的竞争与合作可能发生。我们在集体驱动的简并量子热机器中研究它们的相互作用,并表明这些机制可以根据机器的工作方式(冰箱或发动机)进行配合或竞争。夹带 - 单位同步相互作用持续存在,退化水平的数量增加,而在退化的热力学极限中,相互同步主导。总体而言,我们的工作研究了量子同步的退化和多级缩放的效果,并显示了不同的同步机制如何在量子系统中进行合作和竞争。
随着人工智能 (AI) 在医疗保健、交通、能源和军事应用等各个领域的普及,人机协作变得越来越重要。了解系统元素(人类和人工智能)之间的相互关系对于在团队成员能力范围内实现最佳结果至关重要。这对于设计更好的人工智能算法和寻找有利于人工智能与人类联合任务的场景也至关重要,这些场景可以利用两个元素的独特能力。在这项概念研究中,我们引入了有意行为同步 (IBS) 作为人类和人工智能之间的同步机制,以建立信任关系而不损害任务目标。IBS 旨在利用可以集成到人工智能算法中的心理学概念,在人工智能决策和人类期望之间创造一种相似感。我们还讨论了使用多模态融合在两个合作伙伴之间建立反馈回路的潜力。我们通过这项工作的目标是开启一种研究趋势,以探索在非人类成员团队之间部署同步的创新方法为中心。我们的目标是培养人类和人工智能之间更好的合作和信任意识,从而实现更有效的联合任务。
摘要:本研究探讨了内感受和社会框架对运动同步任务中脑间电生理 (EEG) 和血流动力学 (通过功能性近红外光谱 (fNIRS) 收集) 功能连接一致性的影响。14 个二元组在有和无内感受焦点的情况下执行运动同步任务。此外,通过增强共享意向性,运动任务具有社交或非社交框架。在实验期间,通过 EEG-fNIRS 超扫描范例收集 delta、theta、alpha 和 beta 频带以及氧合和脱氧血红蛋白 (O2Hb 和 HHb)。计算两个神经生理信号的脑间一致性指数,然后将它们关联起来,以探索二元组中功能连接 EEG-fNIRS 的相互一致性。研究结果表明,与无专注条件和右半球相比,专注状态下左半球的 delta 和 O2Hb、theta 和 O2Hb 以及 alpha 和 O2Hb 之间的相关值显著更高(专注和无专注条件下均如此)。此外,当任务以社交方式与非社交方式进行比较时,在专注状态下左半球的 delta 和 O2Hb 以及 theta 和 O2Hb 之间的相关值更高。这项研究表明,专注于呼吸和共同的意向性会连贯地激活执行联合运动任务的二元组中相同的左额叶区域。
此参考设计是一款 28 V 输出、5 A 同步降压转换器,适用于输入范围为 50 V 至 150 V 的太空应用。TPS7H5001-SP PWM 控制器控制功率级。INA901-SP 感应电感电流并向控制器提供电流反馈,从而实现平均电流模式控制和输出短路保护。如果不需要这些功能,可以移除 INA901-SP,并使用电压模式控制运行 TPS7H5001-SP。TPS7H5001-SP 的可调死区时间允许优化开关 MOSFET 的时序,从而在 100 V 输入下实现超过 94% 的效率,在 50 V 输入下实现超过 96% 的效率。包含一个自偏置电路,可直接从输出为控制电路供电。如果提供外部 12 V 偏置,则可以移除自偏置电路,从而提高效率。
摘要量子点蜂窝自动机(QCA)代表新兴的纳米技术,该纳米技术有望取代当前的互补金属 - 氧化物 - 氧化物 - 氧化电导剂数字整合电路技术。QCA构成了一种极为有希望的无晶体管范式,可以将其降低到分子水平,从而促进TERA级设备的整合和极低的能量耗散。可逆QCA电路的可逆性从逻辑级别降低到物理水平,可以执行比Landauer能量限制(KBTLN2)耗散能量更少的计算操作。逻辑门的时间同步是必不可少的附加要求,尤其是在涉及复杂电路的情况下,以确保准确的计算结果。本文报告了逻辑和物理上可逆的时间同步QCA组合逻辑电路的八个新的设计和仿真。此处介绍的新电路设计减轻了时钟延迟问题,这些问题是由逻辑门信息的非同步,通过使用固有的更对称的电路配置引起的。模拟结果证实了提出的可逆时间同步QCA组合逻辑电路的行为,该逻辑电路表现出超大的能量耗散,并同时提供了准确的计算结果。
Ham,G。X.,Lim,K。E.,Augustine,G。J. &Leong,V。(2023)。 在整个发展中的父母诉讼社交互动中的同步:啮齿动物和人类的跨种种评论。 神经内分泌学杂志。 https://dx.doi.org/10.1111/jne.13241Ham,G。X.,Lim,K。E.,Augustine,G。J.&Leong,V。(2023)。在整个发展中的父母诉讼社交互动中的同步:啮齿动物和人类的跨种种评论。神经内分泌学杂志。https://dx.doi.org/10.1111/jne.13241https://dx.doi.org/10.1111/jne.13241