摘要:本研究探讨了内感受和社会框架对运动同步任务中脑间电生理 (EEG) 和血流动力学 (通过功能性近红外光谱 (fNIRS) 收集) 功能连接一致性的影响。14 个二元组在有和无内感受焦点的情况下执行运动同步任务。此外,通过增强共享意向性,运动任务具有社交或非社交框架。在实验期间,通过 EEG-fNIRS 超扫描范例收集 delta、theta、alpha 和 beta 频带以及氧合和脱氧血红蛋白 (O2Hb 和 HHb)。计算两个神经生理信号的脑间一致性指数,然后将它们关联起来,以探索二元组中功能连接 EEG-fNIRS 的相互一致性。研究结果表明,与无专注条件和右半球相比,专注状态下左半球的 delta 和 O2Hb、theta 和 O2Hb 以及 alpha 和 O2Hb 之间的相关值显著更高(专注和无专注条件下均如此)。此外,当任务以社交方式与非社交方式进行比较时,在专注状态下左半球的 delta 和 O2Hb 以及 theta 和 O2Hb 之间的相关值更高。这项研究表明,专注于呼吸和共同的意向性会连贯地激活执行联合运动任务的二元组中相同的左额叶区域。
伽马波段 (40 Hz) 活动对于感觉和认知处理过程中皮质间传输和跨神经网络信息整合至关重要。精神分裂症患者在响应 40 Hz 的听觉刺激时,支持同步伽马波段振荡的能力选择性降低。尽管这种 40 Hz 听觉稳态反应 (ASSR) 被广泛用作神经精神疾病治疗开发的转化脑电图生物标志物,但 ASSR 背后的时空动态尚未得到充分表征。在本研究中,应用了一种新颖的 Granger 因果关系分析来评估精神分裂症患者 (n = 426) 和健康对照受试者 (n = 293) 在响应 40 Hz 稳态刺激时跨皮质源的伽马振荡传播。两组均显示多个 ASSR 源相互作用,这些相互作用广泛分布于大脑各个区域。精神分裂症患者表现出明显的、层次化的连接异常。在反应开始间隔内,患者表现出从下额回到颞上回的连接异常增加,随后从颞上回到中扣带回的连接减少。在 ASSR 反应的后期(300-500 毫秒),患者表现出从颞上回到中额回的连接显著增加,随后从左上额回到右上额回和中额回的连接减少。这些发现既突出了健康受试者对简单伽马频率刺激的反应中分布式多个源的协调,也突出了
[1] P. Denholm,T。Mai,B。Kroposki,R。Kenyon和M. O'Malley,Wartia和Power Grid:无旋转的指南。编号NREL/TP-6A20-73856,国家可再生能源实验室,戈尔登,2020年5月。[2] J. Wang,A。Pratt和M. Baggu,“用于平滑微电网过渡的网格形成逆变器的综合同步控制”,2019年IEEE Power and Energy Society股东大会(IEEE PES PES GM),pp。1-5,2019年8月。[3] J. Wang,B。Lundstrom和A. Bernstein,“非PLL网格形成逆变器的设计,用于平滑的微电网过渡操作”,2020年IEEE Power and Energy Society Greally Mection(IEEE PES PES GM),2020年8月。[4] M. S. Golsorkhi,M。Savaghebi,D.D.Lu,J.M。Guerrero和J. C. Vasquez,“基于GPS的控制框架,用于准确的电流共享和微电网中的电源质量改进”,《电力电子产品IEEE交易》,第1卷。32,pp。5675–5687,2017年7月。[5]“ IEEE的互连和互连和互操作资源与相关电力系统接口的互操作性标准”,IEEE STD。1547-2018,4月2018。[6]“ IEEE设计,操作和集成与电力系统的设计,操作和集成指南”,IEEE STD。1547.4-2011,2011年7月。
Ti的DP83TC817S-q1上的高级功能可以使用精确时间协议(PTP)恢复传入的中心时钟。设备的集成输入/输出触发了雷达的框架,在几个雷达上及时提供了同步的雷达框架。此同步框架被传达回雷达电子控制单元。DP83TC817S-Q1然后测量接收到的雷达帧的频率偏移,在下一个帧周期中纠正了雷达频率偏移,并同步了频域中的后续帧。在时间域和频域中的同步使中央ADAS MCU能够使用很少的后处理中从传感器中提取的数据,并且比软件级同步提供了更高的准确性。
神经网络的集体行为取决于神经元的细胞和突触特性。相位响应曲线 (PRC) 是一种可通过实验获得的细胞特性测量方法,它量化了神经元的下一个尖峰时间的变化,该变化与刺激传递到该神经元的相位有关。神经元 PRC 可分为纯正值 (I 型) 或具有不同的正负区域 (II 型)。1 型 PRC 网络往往不会通过相互兴奋的突触连接进行同步。我们研究了相同的 I 型和 II 型神经元的同步特性,假设突触是单向的。通过对扩展的 Kuramoto 模型进行线性稳定性分析和数值模拟,我们表明前馈环路基序有利于 I 型兴奋和抑制神经元的同步,而反馈环路基序则破坏了它们的同步趋势。此外,大型有向网络(没有反馈基序或有许多反馈基序)已从相同的无向主干构建,并且对于具有 I 型神经元的有向无环图观察到高同步水平。结果表明,I 型神经元的同步性取决于网络连接的方向性和其无向主干的拓扑结构。前馈基序的丰富性增强了有向无环图的同步性。
患有身体和认知障碍的儿童可以隔离,因为他们表达了他们的需求和感受的能力有限(Lindsay&McPherson,2012年)。这些孩子的父母经常为了解孩子的情绪而挣扎(Currie&Szabo,2020)。医疗保健提供者与患有神经发育障碍和有限表达性沟通的儿童互动时,他们可能会面临类似的挑战。许多研究集中在自闭症谱系障碍儿童(ASD)儿童社会障碍的神经基础上(Kleinhans等,2009; White等,2014; Williams等,2006)。此外,限制社会关系和活动的运动挑战已在脑瘫中进行了广泛的研究(Beckung&Hagberg,2002)。但是,在涉及这些临床人群的社交互动过程中,对协调的二元大脑活动的了解较少。需要对ASD和脑瘫,标准化和客观测量(即生物标志物)进行社交互动的延迟或有限的社交技能的异源性节日(Jeste等,2015)。尤其是,坚固的父母 - 儿童(Guild等人,2021年)和治疗师 - 儿童关系(Särkämö等,2016)对于在临床环境中最大程度地提高表达结果至关重要。由于残疾儿童的社交技能在很大程度上取决于健康的家庭关系(Bennett&Hay,2007年)和治疗融洽的关系(Mössler等,2019),因此保证了与这些相互关系相关的神经机制的调查。在社交环境中与音乐同步会导致行为和生理反应。所有三个年龄段的孩子(2.5、3.5和4.5岁)与人类伴侣的鼓声比扬声器或鼓机的鼓声更好(Kirschner&Tomasello,2009年)。随着越来越多的人聚集在一起,一致的拍手频率增加(Thomson等,2018)。实际上,音乐可以促进个体之间生理和神经反应的一致性。例如,一起听音乐可以提高皮肤电导和心率(Liljeström等,2013)。心血管和呼吸节奏可以
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2024年9月3日。 https://doi.org/10.1101/2024.09.02.610832 doi:Biorxiv Preprint
研究认知功能与潜在大脑活动之间的关系一直是、现在仍然是最大的神经科学挑战之一。功能性磁共振成像 (fMRI) 是一种领先的成像方法,用于量化和绘制与大脑活动相关的代谢变化的地理分布,包括静息时 (Riedl et al., 2016) 或主动处理信息时 (Chen and Glover, 2015)。脑电图 (EEG) 是一种成熟的电生理技术,可安全、非侵入性地 (Cohen, 2017) 记录静息或执行任务时 (Zani and Proverbio, 2003) 突触后浅层大脑活动的时间准确记录 (Burle et al., 2015)。结合脑磁图 (MEG),EEG 对理解不同频率的大脑振荡与特定心理状态和过程的关系做出了广泛贡献 (Benedek et al., 2014)。此外,它还允许测量振幅、相位和同步性的局部变化,并探索与特定认知功能(Perfetti 等人,2011 年;Groppe 等人,2013 年;Roux 和 Uhlhaas,2014 年)相关的空间和时间分布,例如注意力和记忆力。本文将回顾支持认知控制和抑制的焦点和大规模协调模式的当前知识。
混合发电是几种可再生能源发电厂的组合或集成。通常使用的发电系统是太阳能发电厂和风力发电厂。两种类型的发电厂在一个轨道/母线上一起运行以提供最大负载。本研究将测试基于使用升降压转换器的 DC-AC 逆变器的混合发电厂(太阳能和风能)的同步系统。逆变器的输入电压保持恒定在 12 伏,负载为 220 瓦。测试在交流负载和直流负载上进行。 关键词 可再生能源、转换器、逆变器、混合 1. 简介 根据能源和矿产资源部的数据,印度尼西亚太阳能的潜力在 2024 年为 0.87 GW,风能的潜力在 2025 年为 0.97 GW。为了支持这一潜力,政府颁布了国家能源政策法规(Kemenkumham 2006)。北苏门答腊的地形高度为 0-1400 米,导致许多偏远地区无法接入电网。能源专家找到解决这些问题的方法非常重要。因此,通过结合多种可再生能源,可再生能源的可用性研究仍在继续进行(Zhou 等人,2010 年)。混合动力发电厂是几种基于可再生能源的发电厂的组合或集成(Hayu 和 Siregar,2018 年)。两种类型的发电厂同时在一条轨道/母线上运行以服务负载。独立的混合可再生能源系统通常比光伏 (PV) 或风能系统(Bhandari 等人,2014 年)和(Bhandari 等人,2015 年)成本更低,可靠性更高。混合动力系统的范围可以从能够为一个家庭提供电能的小型系统到可以为一个村庄或岛屿输送电力的大型系统。混合电力系统对偏远地区影响很大,特别是那些在技术和经济上不具备国家电网可行性的发展中国家(Bhandari 等人,2015 年)和(Nehrir 等人,2011 年)。印度尼西亚的太阳能潜力总体上处于足够的水平(Nurliyanti 和 Pandin,2014 年)。地球表面接收的太阳能供应量达到每年 3x1024 焦耳,这相当于 2x1017 瓦特。这个能量相当于当今世界能源消耗的 10,000 倍。印度尼西亚的风力发电能力也足够,因为印度尼西亚的平均风速为 3-6 米/秒。努沙登加拉地区可以获得更高的风速。而苏门答腊、爪哇、加里曼丹、苏拉威西和巴布亚等岛屿的风速只有 2.7–4.5 米/秒。通用设计的风力涡轮机来自欧洲和美洲,这两个大洲的风力潜力最大,风速约为 9-12 米/秒(Wuriyandani 2015),因此有必要在印度尼西亚进行与合适风力涡轮机设计相关的研究。使用 CAD / CAA 工具通过线性规划技术分析混合系统,目的是最大限度地降低平均电力生产成本,并实现可靠的系统,同时在设计和运行中考虑环境因素(Chedid 1997)。混合电站产生的单向电能储存在电池中,转化为交流电能。这是由需要交流电的电负载引起的,例如电视、灯光和
1 2 1 2 ( ) ( ( ), ( ), , ( )) ( ( ), ( ), , ( )) ( ) i ri rr rn inii de tfxtxtxtfxtxtxtket dt (6)