I. 简介 深空通信系统在非常远的距离内运行,而机载能量发生器的容量非常有限,导致接收端的信噪比 (SNR) 非常低。这就是使用接近香农极限的纠错码的原因。然而,为了利用这种增益,必须进行相干解调,并且必须在更严格的 SNR(对于 Turbo 码 1/6,𝐸 𝑠 /𝑁 0 ≃ – 8 dB)下提供载波相位同步。分配给深空任务的频谱资源是有限的(X 波段 8 GHz),为了优化频谱效率,空间数据系统咨询委员会(CCSDS)建议 [1] 对于 B 类任务(深空任务)使用预编码 GMSK 调制(高斯最小频移键控),高斯滤波器带宽位周期积𝐵𝑇 𝑏 = 0.5,对于 A 类任务(低空任务)使用 GMSK 𝐵𝑇 𝑏 = 0.25。本文讨论了一种由最大后验(MAP)准则和洛朗展开式 [3] 衍生的用于 GMSK 调制的盲相位检测器 [2]。为了评估该相位检测器在非常低的 SNR 下在闭环结构中的性能,我们考虑了 [4] 和 [5] 中描述的另外两个简化版本。我们对线性和非线性域中的这三种不同结构进行了全面研究。我们还介绍了使用低速率纠错码(Turbo 1/6)进行计算机模拟所获得的结果。这项工作的目的是比较这三个相位检测器的性能,并评估为获得两个简化版本而进行的简化的影响。
。CC-BY-NC-ND 4.0 国际许可证下可用未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是
高精度和高准确度地测量、保持和分配时间的能力是科学探索的基础能力。除了基础科学之外,时间同步也是公共和私人通信、导航和测距、分布式传感等技术应用不可或缺的功能。我们建议实施一个由卫星和地面时钟组成的量子网络,该网络能够实现皮秒精度的量子时钟同步。实施拟议的 QCS 网络具有双重优势:(1) 为传统应用提供比目前更准确、更强大、更安全的时间同步网络,(2) 可满足未来量子通信网络更严格的同步要求。
记录的版本:此预印本的一个版本于2024年9月1日在Chaos,Solitons&Fractals发表。请参阅https://doi.org/10.1016/j.chaos.2024.115241。
在虚拟现实(VR)研究领域,方法论进步,技术创新和新颖应用的协同作用至关重要。我们的工作在VR环境中进行的空间能力评估背景下封装了这些方面。本文提出了VR,眼睛跟踪和脑电图(EEG)的全面综合框架,该框架无缝地结合了测量参与者的行为性能,并同时收集时间戳记的眼球跟踪和EEG数据,以促进某些条件和增加这种态度的潜在影响,以使空间能力在某些条件和增加的范围内都受到影响和注意力的影响。该框架涵盖了参与者的凝视模式(例如固定和扫视),脑电图数据(例如Alpha,Beta,Gamma和Theta波模式)以及心理测试和行为测试的测试。在技术方面,我们利用Unity 3D游戏引擎作为通过模拟更改空间探索条件来运行空间能力任务的核心。我们模拟了两种类型的空间探索条件:(1)微重力条件,其中参与者的白痴(身体)轴静态和动态地与其视觉轴进行了错位; (2)火星地形的条件,提供视觉参考框架(用于)但有限且陌生的地标物体。我们特别针对人类的空间能力和空间感知。对于空间感知,我们应用了大小和距离感知测试的数字化版本来衡量参与者对大小和距离的主观感知。To assess spatial ability, we digitalized behav- ioral tests of Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test and integrated them into the VR settings to evaluate participants' spatial visualization, spatial relations, and spatial orientation abil- ity, respectively.C#脚本的套件策划了VR体验,实现了实时数据收集和同步。这项技术创新包括从不同来源的数据流(例如Vive控制器,远射设备和EEG硬件)集成,以确保具有凝聚力和全面的数据集。我们的研究中的一个关键挑战是同步来自脑电图,眼睛跟踪和VR任务的数据,以促进全面的分析。为了应对这一挑战,我们采用了Opensync库的统一接口,该工具旨在统一心理学和神经科学领域中不同的数据源。这种方法可确保所有收集的措施共同参考,从而对参与者绩效,凝视行为和脑电图活动有意义分析。基于统一的系统无缝地包含任务参数,参与者数据和VIVE控制器输入,提供了一个多功能平台,用于在不同域中进行评估。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
研究文章:新研究| Sensory and Motor Systems Post-Movement Beta Synchronization Induced by Speed Effects IHI from Ipsilateral to Contralateral Motor Cortex https://doi.org/10.1523/ENEURO.0370-24.2025 Received: 26 August 2024 Revised: 3 February 2025 Accepted: 21 February 2025 Copyright © 2025 Zhang et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
在感觉运动同步(同步和连续敲击)任务中,受试者将其四肢与以各种节奏呈现的等质色调同步移动,并在音调停止后继续以相同的速度敲击。我们研究了双侧下肢电动机控制执行此任务的能力,作为检查与人类运动相关的运动配位的关键指标,例如步行。在这里,认为听觉和触觉输入等感官信息可以提高感觉运动同步的准确性。在这项研究中,我们探讨了在存在或不存在感觉信息的情况下,双侧下肢的节奏运动控制变化的变化。三十三名健康的志愿者执行了三种类型的脚敲击任务:同步 - 碰撞(SC- TAP),敲击(A-TAP)和两者的组合(SCA-TAP)。参与者被指示在500至4,800毫秒之间以固定的间隔间隔(ISIS)(ISIS)呈现的音调同步点击脚开关(或在A-TAP中执行类似的运动)。用单侧脚或双侧运动,两脚(同时)或交替进行双侧运动(反相)进行水龙头。评估了同步敲击误差和TAP间间隔(ITI)。在反相条件下,ITI的变异系数(CV)明显小于SC-TAP和SCA-TAP任务中的单侧或同相条件。此外,考虑到两侧的水龙头时间,仅在SC-TAP任务中,反相的CV明显降低。调查结果表明,反相条件在重复的下肢运动中表现出较高的时间稳定性。当考虑到反相运动中的音调未表现的节奏肢体运动的稳定性时,这些发现还强调了脚底的触觉反馈意义。
1简介移动网络的第五代(5G)预计将提供广泛的基于位置的服务[1]。为了为这些服务铺平道路,文献中已经引入了无数确切的位置技术,其中大多数依赖于为移动用户(MUS)[2]的访问点(APS)之间的合作(APS)之间的合作。,特别是为了估算位置,这些技术利用了代理之间(即MUS和AP之间进行的时间测量),要求它们具有共同的时间群[3]。因此,对于合作的功能方法,需要在彼此之间以及与MUS相互准确同步AP [4,5]。已经付出了巨大的努力来设计从不同网络的快速,连续和精确的同步算法,从无线传感器网络(WSN)到无线通信网络[6]。通常,最新同步