摘要:加法是数字计算机系统的基础。本文介绍了三种基于标准单元库元素的新型门级全加器设计:一种设计涉及 XNOR 和多路复用器门 (XNM),另一种设计利用 XNOR、AND、反相器、多路复用器和复合门 (XNAIMC),第三种设计结合了 XOR、AND 和复合门 (XAC)。已与许多其他现有的门级全加器实现进行了比较。基于对 32 位进位纹波加法器实现的广泛模拟;针对高速(低 V t )65nm STMicroelectronics CMOS 工艺的三个工艺、电压和温度 (PVT) 角,发现基于 XAC 的全加器与所有门级同类产品相比都具有延迟效率,甚至与库中可用的全加器单元相比也是如此。发现基于 XNM 的全加器具有面积效率,而基于 XNAIMC 的全加器在速度和面积方面与其他两种加法器相比略有折衷。I. 简介二进制全加器通常位于微处理器和数字信号处理器数据路径的关键路径中,因为它们是几乎所有算术运算的基础。它是用于许多基本运算(如乘法、除法和缓存或内存访问的地址计算)的核心模块,通常存在于算术逻辑单元和浮点单元中。因此,它们的速度优化对于高性能应用具有巨大的潜力。1 位全加器模块基本上由三个输入位(例如 a、b 和 cin)组成并产生两个输出(例如 sum 和 cout),其中' sum'指两个输入位'a'和'b'的总和,cin 是从前一级到这一级的进位输入。此阶段的溢出进位输出标记为“ cout ”。文献 [1] – [10] 中提出了许多用于全加器功能的高效全定制晶体管级解决方案,优化了速度、功率和面积等部分或所有设计指标。在本文中,我们的主要重点是使用标准单元库 [11] 中现成的现成组件实现高性能全加器功能。因此,我们的方法是半定制的,而不是全定制的。本文主要关注逻辑级全加器的新颖设计,并从性能和面积角度重点介绍了与许多其他现有门级解决方案的比较。从这项工作中得出的推论可用于进一步改进晶体管级的全加器设计。除此之外,本文还旨在提供教学价值的附加值。本文的其余部分组织如下。第 2 节介绍了 1 位二进制全加器的各种现有门级实现。第 3 节提到了三种新提出的全加器设计。第 4 节详细介绍了模拟机制和获得的结果。最后,我们在下一节中总结。
拜占庭式缺陷耐受性(BFT)状态机器复制(SMR)协议构成了现代区块链的基础,因为它们在所有区块链节点上保持一致的状态,同时耐受界数的拜占庭故障数量。我们在过度故障设置中遇到了Alyze BFT SMR,拜占庭断层的实际数量超过了协议的公差。我们首先设计了第一种基于链式和法定人数的第一种修复算法部分同步SMR,以从过度故障引起的错误状态中恢复。可以使用任何佣金故障检测模块来实现此类过程 - 一种算法,该算法可以识别故障复制品而不错误地找到任何正确的复制品。我们以稍弱的可将其保证来实现这一目标,因为在过多的故障的情况下,原始的策略概念是不可能满足的。我们在Rust中实现可回收的热门。在恢复例程终止7副复制品后,通行简历达到了正常水平(没有过多的故障),并略微缩短了≤4。30副复制品的3%。平均而言,它将延迟增加12。7%的7%和8个复制品。30副本的85%。除了采用现有检测模块外,我们还为一般的BFT SMR供应机构建立了足够的条件,以便在最多(n-2)拜占庭式复制品(来自n个总复制品中)的完全故障检测。我们首先为任何SMR协议提供第一个闭合盒故障检测算法,而无需任何额外的通信。然后,我们在Tendermint和Hotstuff中描述了我们的断层检测例程的开盒构成,进一步逐渐降低了渐近和具体的开销。
[2] Giridharan,Sumitra K. Prof MK。“使用磁场定向控制 (FOC) 降低转矩脉动 - BLDCM 与 PMSM 的比较。” [3] Rafaq,Muhammad Saad、Will Midgley 和 Thomas Steffen。“永磁同步电机转矩脉动最小化技术的最新进展回顾。” IEEE 工业信息学学报 (2023)。 [4] Yashvi N. Parmar,“永磁同步电机磁场定向控制的硬件实现”,国际创造性研究思想杂志 (IJCRT) www.ijcrt.org,第 6 卷,第 2 期,2018 年 4 月,ISSN:2320-2882。 [5] Gupta,Ashish 和 Sanjiv Kumar。“用于 asd 的三相空间矢量 pwm 电压源逆变器分析。”国际新兴技术与先进工程杂志 2.10 (2012):163-168。[6] Yusivar, Feri 等人。“永磁同步电机磁场定向控制的实现。”2014 年国际电气工程与计算机科学会议 (ICEECS)。IEEE,2014 年。[7] Jacob, Jose 和 A. Chitra。“空间矢量调制多电平逆变器供电 PMSMdrive 的磁场定向控制。”Energy Procedia 117 (2017):966-973。[8] Faturrohman, Rifal、Nanang Ismail 和 Mufid Ridlo Effendi。“基于 DSP tms320f28027f 的无刷直流电机速度控制系统。”2022 年第 16 届国际电信系统、服务和应用会议 (TSSA)。 IEEE,2022 年。[9] K. Kolano,“PMSM 电机矢量控制的新方法”,载于 IEEE Access,第 11 卷,第 43882 43890 页,2023 年,doi:10.1109/ACCESS.2023.3272273。[10] P ELLEGRINO、G IANMARIO 等人,“P ERFORMANCE
功能高性能操作误差放大器内部软启动/停止/停止/停止0.5%内部电压准确性,0.8 V电压参考OCP准确性,锁存前的四个重新输入时间“无损”差分电感器当前的“无损”差分电感电流•内部高精确的电流传感范围20 ns ocplifier示威范围•extive oscillative•extive oscillative•extive oscillative•extive 20 khz•100000 khz。内部门驱动器的非重叠时间5.0V至12 V操作支撑1.5 V至19 V VINV范围从0.8 V到3.3 V到3.3 V(使用12 V CC的5 V)通过OSC启用芯片通过电压锁定电压保护(OCP)固定量•保证的OCP THERENSUD保证•保证的OCP启动•热量••pressiated•pressiated•pressiated•pressiated•pressive•pressive•••pressiated••pressiated集成的MOSFET驱动程序内部R BST = 2.2集成的增强二极管•自动节省模式,以最大化光负载操作期间效率同步函数远程接地感应这是无PB- free设备*
本文详细介绍了为无人机设计的11 kW巡航电机的重量减轻过程,遵循三阶段的方法。该研究靶向现有的6相,28杆/24个插槽电动机,其主要目标是减少重量,同时最大程度地减少性能降解。堆栈长度和电动机直径被选为关键变量。彻底分析了运动几何形状对重量,电磁特性和热特性的影响。此外,转子轭厚度和永久磁铁厚度被认为是最终确定电动机配置的进一步设计变量。堆叠长度为40毫米,电动机直径为166毫米,转子轭厚度为3.4毫米,持久性磁铁厚度为2.8 mm,然后进行实验验证。 关键字:无人机(无人机),外转子PMSM,重量最小化,温度,堆叠长度,电动机外径堆叠长度为40毫米,电动机直径为166毫米,转子轭厚度为3.4毫米,持久性磁铁厚度为2.8 mm,然后进行实验验证。关键字:无人机(无人机),外转子PMSM,重量最小化,温度,堆叠长度,电动机外径
对集成系统中关键单元进行有效组合的需求日益增加。SoC 系统的开发旨在提供芯片级集成,这成为集成电路发展的必然趋势,并广泛应用于智能手机、工业应用和微控制器。ARM AMBA 协议是系统各个部分之间交互的普遍采用的方式。在 AMBA 架构中,AHB 到 APB 桥接器对于在 SoC 系统中结合高性能 AHB 总线和低功耗 APB 总线做出了重要贡献。本项目旨在使用 Verilog 实现 AHB 到 APB 桥接器,从而实现这两条总线之间的稳定数据传输。所提出的 AHB 到 APB 桥接器旨在适应不同的读写策略并确保 APB 总线上外设的正常工作。该桥接器已通过 Verilog 硬件描述语言 (HDL) 实现。创建了一个测试台,其中有一个虚拟 AHB 主机和一个优化的 SRAM 作为高速 APB 外设。Verdi 仿真表明该桥接器完全符合设计意图。关键词:AHB 到 APB 桥接器;片上系统 (SoC); AMBA 协议。
课程运输电气化的概述,其中包括汽车和航空航天需要高效率并更好地控制的电动驱动器。 永久磁铁同步电动机(PMSM)具有高功率密度,结构简单,高功率因数和小尺寸,使其非常适合电动汽车的牵引力。 汽车和航空航天中新兴应用的急剧要求要求进一步优化PMSM的电磁设计。 有限元分析(FEA)是一种工具,有助于设计优化高性能的电机(例如PMSMS)。 它也可以用来预测和了解永久磁铁同步电动机(PMSM)在各种物理条件下的行为。 在最近的过去,为控制PMSM的控制而开发了许多方法。 面向场的控制(FOC)和直接扭矩控制(DTC)是用于PMSM的两种主要控制方法。 由于数字信号处理领域的进步,已经有可能实现非线性控制方案(例如模型预测性控制(MPC))。 尽管具有预先控制的PMSM驱动器具有巨大的运输电气化潜力,但仍需要进一步的研究和知识库创建,以将现有的应用程序思想发展为可靠,具有成本效益的功能性产品。 对电气工程专业学生的PMSM设计和控制方法的强大基本知识对于提高运输电气化至关重要。 课程的主要目标如下:课程运输电气化的概述,其中包括汽车和航空航天需要高效率并更好地控制的电动驱动器。永久磁铁同步电动机(PMSM)具有高功率密度,结构简单,高功率因数和小尺寸,使其非常适合电动汽车的牵引力。汽车和航空航天中新兴应用的急剧要求要求进一步优化PMSM的电磁设计。有限元分析(FEA)是一种工具,有助于设计优化高性能的电机(例如PMSMS)。它也可以用来预测和了解永久磁铁同步电动机(PMSM)在各种物理条件下的行为。在最近的过去,为控制PMSM的控制而开发了许多方法。面向场的控制(FOC)和直接扭矩控制(DTC)是用于PMSM的两种主要控制方法。由于数字信号处理领域的进步,已经有可能实现非线性控制方案(例如模型预测性控制(MPC))。尽管具有预先控制的PMSM驱动器具有巨大的运输电气化潜力,但仍需要进一步的研究和知识库创建,以将现有的应用程序思想发展为可靠,具有成本效益的功能性产品。对电气工程专业学生的PMSM设计和控制方法的强大基本知识对于提高运输电气化至关重要。课程的主要目标如下:本Gian课程的目的是在工程师和研究学者中创建如此知识基础和意识。
残疾/可及性服务:根据《康复法》第504条,《美国残疾人法》(ADA)和《 ADA修正案法》(ADAAA)(德克萨斯州泰勒大学)为学习,身体和心理残疾的学生提供住宿。如果您患有残疾,包括不可访问的诊断,例如学习障碍,慢性病,TBI,PTSD,ADHD,或者您在以前的教育环境中有修改或住宿的历史,则鼓励您访问https://hind.accessiblearning.com/uttyly.com/uttyler和填写新生的学生。在提交申请时,学生可访问性和资源(SAR)办公室将与您联系,并与助理董事学生服务/ADA协调员Cynthia Lowery任命。有关更多信息,包括填写服务申请,请访问SAR网页http://www.uttyler.edu/disabilityservices,位于大学中心的SAR办公室,#3150,或致电903.566.7079。
表面安装的永久磁铁同步电动机(SPMSM)是一台电动机,由于良好的特性,例如高功率密度,较低的质量,高效率和较低的惯性扭矩,因此广泛应用于电动汽车(EV)和电动驱动器。对于SPMSM,有两种类型的SPMSM,即内部转子SPMSM和外转子SPMSM。为了分析,计算和比较这两种运动类型的优势和缺点,本研究提出了一个分析模型,以计算和设计具有内部和外转子配置的SPMSM的电磁参数和热特性。随后,开发了有限元方法来验证从分析模型获得的输出参数。仿真结果还表示两种类型的电动机的性能。但是,内转子SPMSM在高速和低温方面具有优势,而外转子SPMSM具有更高的扭矩和稳定性,但在较高的温度下运行。