加州RPS法案要求到2030年将可再生能源在电力销售中的比例提高到60%。然而,天然气发电量无法满足夏季紧张的电力需求,导致大规模停电。
本文档介绍了一种使用 TMS320C24x 控制永磁同步电机的解决方案。这种新型 DSP 系列能够以经济高效的方式设计无刷电机智能控制器,从而实现增强的操作,包括更少的系统组件、更低的系统成本和更高的性能。所提出的控制方法依赖于磁场定向控制 (F.O.C.)。该算法可在各种速度下保持效率,并通过直接从转子坐标控制磁通量来考虑瞬态相位的扭矩变化。本报告介绍了不同的增强算法。所提出的解决方案包括抑制相电流传感器的方法和使用滑模观测器进行无速度传感器控制。
本论文涉及汽车应用中配备永磁同步电机 (PMSM) 的电力驱动系统的控制系统结构的设计和分析。本文考虑了无传感器控制,即没有机械转子位置传感器的矢量控制,并彻底分析了锁相环类型的速度和位置估算器。本文提出了一些修改方法,以允许在整个速度范围内运行,并提高估算器处理较大速度估算误差的能力。结果表明,转子凸极效应会影响估算器的动态特性,在某些参数选择和操作条件下,估算器的动态特性可能会变得不稳定。因此,本文推导出简单的参数选择规则,以保证稳定性并简化实施。对于转子凸极效应较小或可忽略的 PMSM,本文还考虑了一种仅从反电动势中提取位置信息的估算器。该估算器基于众所周知的“电压模型”,并提出了一些修改,以通过保证启动时的同步并允许稳定的旋转反转来提高估算器在低速范围内的性能。通过控制实现损耗最小化的理论应用于用于混合动力电动汽车推进的 PMSM 驱动器。通过更强的磁场削弱,可以降低基本铁芯损耗,但代价是增加电阻损耗。研究表明,然而
极限周期振荡器之间的同步可以通过夹带到外部驱动器或通过相互耦合而产生。在经典同步系统中研究了两种机制之间的相互作用,但在量子系统中没有研究。在这里,我们指出,由于量子系统中的相位拉力和相位排斥,这两种机制之间的竞争与合作可能发生。我们在集体驱动的简并量子热机器中研究它们的相互作用,并表明这些机制可以根据机器的工作方式(冰箱或发动机)进行配合或竞争。夹带 - 单位同步相互作用持续存在,退化水平的数量增加,而在退化的热力学极限中,相互同步主导。总体而言,我们的工作研究了量子同步的退化和多级缩放的效果,并显示了不同的同步机制如何在量子系统中进行合作和竞争。
对集成系统中关键单元进行有效组合的需求日益增加。SoC 系统的开发旨在提供芯片级集成,这成为集成电路发展的必然趋势,并广泛应用于智能手机、工业应用和微控制器。ARM AMBA 协议是系统各个部分之间交互的普遍采用的方式。在 AMBA 架构中,AHB 到 APB 桥接器对于在 SoC 系统中结合高性能 AHB 总线和低功耗 APB 总线做出了重要贡献。本项目旨在使用 Verilog 实现 AHB 到 APB 桥接器,从而实现这两条总线之间的稳定数据传输。所提出的 AHB 到 APB 桥接器旨在适应不同的读写策略并确保 APB 总线上外设的正常工作。该桥接器已通过 Verilog 硬件描述语言 (HDL) 实现。创建了一个测试台,其中有一个虚拟 AHB 主机和一个优化的 SRAM 作为高速 APB 外设。Verdi 仿真表明该桥接器完全符合设计意图。关键词:AHB 到 APB 桥接器;片上系统 (SoC); AMBA 协议。
注意:用户可以根据应用要求将当前的感官电阻放在VBU或VBAT上。SC8905不断调节设置值时的感应电阻电流,该电阻由内部寄存器和CSO电阻决定。请参阅CC充电/trick滴/输出当前设置规范的限制。
GE 同步调相机旨在提供无故障、可靠的服务,是一种经过验证的解决方案,近一个世纪以来已有 200 多个应用。材料和制造技术的进步,加上现代控制技术,极大地提高了这种坚固、久经考验的解决方案的可靠性和功能性。操作员现在可以利用机电系统的简单性以及最先进的励磁和控制系统的优势来满足他们的电网支持需求。
带正弦 PWM 控制的 XtrapulsPac 全数字驱动器是伺服驱动器,可通过位置传感器控制无刷交流电机。标准控制接口可以是: - CANopen, - EtherCAT® 1, - 模拟, - 步进电机仿真, - 逻辑 I/O。但 XtrapulsPac 系列还提供更复杂的功能,例如: - 包括位置捕获的 DS402, - 主/从和电子传动装置, - 带运动排序的定位器。所有版本均标配集成安全功能安全扭矩关闭 (STO) SIL 2。XtrapulsPac 尺寸非常小,有多种设计可供选择: - 独立或多轴版本, - 标准强制风冷或推入式冷却版本。XtrapulsPac 系列驱动器完全可配置,以适应各种应用。XtrapulsPac 系列的两个驱动器版本如下所述。带有 CANopen 接口的 XtrapulsPac 版本可用于以下应用类型: 根据 DS402 协议由 CANopen 现场总线控制的轴, 作为运动序列器独立运行,通过逻辑 I/O 进行控制, 传统模拟速度驱动器,带有 +/- 10 V 命令和通过 A、B、Z 编码器信号仿真的位置输出, 步进电机仿真,带有 PULSE 和 DIR 命令信号。带有 EtherCAT® 接口的 XtrapulsPac 版本可用于以下应用类型: 根据 DS402 协议由 EtherCAT® 现场总线控制的轴, 作为运动序列器独立运行,通过逻辑 I/O 进行控制。配置和参数化软件工具 Gem Drive Studio 允许根据目标应用(模板)快速配置 XtrapulsPac 驱动器。1.2 - 说明/符合标准 1.2.1 - 一般说明
许多过程需要准确的速度控制。顾名思义,Synrm是同步电动机,在没有编码器的情况下总是以参考速度运行,几乎没有错误。即使是感应电动机逆变器中最佳的滑动综合系统也永远无法匹配synrm的精度。有时您的应用程序可能需要您以慢速运行电动机,例如以少于40 rpm的速度运行。如果您使用的是Synrm,并且您的驱动器无法提供必要的扭矩,则可能会绊倒。这意味着您可能会在问题调试时停机。ABB驱动器即使没有速度传感器,也可以完全控制速度至零速度。
背景和动机:离散动力系统是研究网络中扩散现象的形式化模型。这些模型的应用领域包括社会传染(例如信息、观点、时尚、流行病)的研究和能源需求建模(例如太阳能的适应)(Adiga 等人 2019 年;Chistikov 等人 2020 年;Ogihara 和 Uchizawa 2020 年;Gupta 等人 2018 年)。非正式地说,这样的动力系统 4 由一个底层(社会或生物)网络组成,每个节点都有一个来自域 B 的状态值。在本文中,我们假设底层图是有向的,域是二进制的(即 B = { 0,1 } )。传染病的传播由一组布尔局部函数建模,每个节点一个。对于任何节点 v ,v 处的局部函数 fv 的输入是 v 的当前状态及其邻居(即,v 具有传入边的节点)的状态,而 fv 的输出是下一时刻 v 的状态。我们考虑同步更新模型,其中所有节点都评估其局部函数并并行更新其状态。这些动力系统在文献中被称为同步动力系统 (SyDS)(例如,(Adiga 等人 2019;Rosenkrantz 等人 2018))。在涉及系统生物学的应用中,这样的系统也称为同步布尔网络(例如,(Kauffman 等人 2019))。