可靠性和轨道稳定性。FY-92 期间 VUV 和 X 射线环的非计划停机时间分别为 3.1% 和 3.7%。工作人员已齐心协力确定并解决主要的停机原因。从旧计算机系统到新计算机系统的过渡进展顺利,应在 FY-93 年底前完成。工作人员值得称赞的是,他们能够在保持操作的同时更换整个控制系统,从而使转换对用户社区透明。X 射线环非计划停机的第二大原因是 RF 系统。为了解决这个问题,在 1992 年 12 月停机期间安装了第四个 RF 腔。有了四个腔,每个腔的平均负载就会减少,从而更可靠地运行。此外,如果一个腔掉落,那么其他三个腔会提供足够的功率,使光束不会倾泻。注入系统也正在进行重大升级。线性能量增加到 120MeV,现在以新能量定期运行。正在为助推器安装新的偶极子、四极子和六极子电源。用户应该能明显看到注入时间和系统可靠性的改善。填充期间的轨道稳定性由全局谐波反馈系统提供,垂直方向优于 20 微米,水平方向优于 40 微米。NSLS 工作人员
三十多年来,基于结构的药物设计一直是药物发现不可或缺的一部分,为众多获批药物的开发做出了贡献。本文,我们将讨论制药行业基于结构的药物设计的发展历程和现状,并使用阿斯利康内部晶体结构库中的数据提供更多背景信息。在过去 20 年中,得益于同步加速器设施的技术进步,该公司已从混合内部和同步加速器数据收集模式转变为“仅同步加速器”方法。我们提供了将结构交付给项目的真实示例,包括一个高通量项目和一个单一结构对于发现候选药物至关重要的案例。我们得出的结论是,尽管单粒子低温电子显微镜和深度学习结构预测方法取得了进展,但大分子晶体学仍然是药物发现的关键工具。
1927 年诺贝尔奖颁奖词:根据爱因斯坦的光电效应理论,光由量子组成,量子是具有与特定频率相对应的确定能量的“包”。光量子称为光子。1922 年,当阿瑟·康普顿将 X 射线光子照射到金属表面时,电子被解放出来,X 射线的波长增加,因为部分入射光子能量被转移到电子上。实验证实,电磁辐射也可以描述为遵循力学定律的光子粒子。
今年的用户运行以非常积极的态势开始,因为 BESAC 评审小组对同步辐射设施的未来,特别是 SSRL 的未来给予了积极评价。然而,正如 Keith Hodgson 在 1997 年用户大会上指出的那样,在不久的将来,有许多具有挑战性的任务需要关注,以便 SSRL 保持高水平的生产力和高质量的用户光束时间。您的用户组织执行委员会一直积极代表您与 SSRL 实验室管理小组 ( LMG ) 合作,以解决其中的许多问题,例如:1) 扩大用户群和光束时间的可用性,2) 开发新的光束线和功能,3) 维持强大的支持人员,4) 最先进的计算和基于网络的工具,以及 5) 诊断和提高光束稳定性。
同步加速器辐射(SR)提供了广泛的明亮光,可以量身定制以测试无数的研究问题。sr提供了跨尺度阐明结构和组成的途径,使其非常适合研究植物和种子。在这里,我们介绍了一系列方法论和在光源设施上可用的数据输出。数据集具有来自包括Citrullus sp的各种作物物种的种子和谷物。(西瓜),木制sp。(菜籽),Pisum sativum(Pea)和Triticum durum(小麦),以展示SR在推进植物科学方面的力量。SR微型计算层析成像(SR-µCT)成像的应用显示了内部种子微观结构及其三维形态,而无需破坏性切片。光谱探测了样品生物化学,详细介绍了种子大量营养素的空间分布,例如胚胎,胚乳和种子涂层中脂质,蛋白质和碳水化合物。使用同步加速器X射线的方法,包括X射线吸收光谱(XAS)和X射线荧光(XRF)成像显示元素分布,以在种子子组门中的空间图中绘制微量营养素并确定它们的物种。同步基谱镜(SM)允许在纳米级水平上解析化学成分。各种农作物种子数据集展示了加拿大光源五个梁线提供的结构和化学见解的范围,以及用于告知植物和农业研究的同步成像的潜力。
摘要 - 粒子疗法利用高能量质子和碳离子来治疗患者,利用其独特的Bragg峰和优越的相对生物学有效性。这种治疗方式在改善疾病治疗率和最大程度地减少治疗副作用方面表现出了巨大的希望。然而,它在中国的采用受到与这种先进的放射治疗技术相关的高成本的限制,强调了该国对粒子治疗设备的大量需求。本报告对临床粒子治疗机构普遍存在的回旋子和同步加速器加速器进行了比较分析。我们检查了它们的光束参数,并提供了与每种加速器类型相关的技术和功能的详细见解。特别是,我们阐明了光束注入,加速和提取的过程,突出了循环的每个阶段的操作复杂性。此外,我们在三维剂量递送中为两个加速器提供了光束强度和能量调制。总而言之,同步加速器提供可调节的能级和产生高能多功能的能力,同时保持远光灯传输速率。相反,回旋子提供具有快速强度调制的连续光束,并且在梁传输线上具有能量变化的能量降解器,从而导致降解器附近的激活。因此,在为临床机构选择最合适的加速器时,必须仔细考虑诸如成本,维护要求,治疗效率和临床需求之类的因素。
1)储能和催化:NM长度尺度实时化学反应•我们可以防止您的手机电池垂死吗?•我们可以设计更好的催化剂吗?2)材料合成:新型的纳米功能材料•我们可以建立更好的太阳能电池吗?•我们可以设计新方法来提供药物吗?3)环境科学:了解毒素在植物中移动•我们如何保护食物网?4)微电子学:传统电子和最先进的•我们可以确保我们的电子产品按照期望的方式执行吗?5)药物:蛋白质结构解决方案•我们可以设计新的,更好的药物吗?6)磁性:Spintronics•哪些材料超出了摩尔定律?
“同步辐射:基本面,方法和应用”该学校将于2024年9月16日至26日在穆吉亚(意大利)举行。Muggia是Trieste海湾的一个可爱的老城区,距离Elettra-Sincrotrone Trieste不远,Elettra-Sincrotrone Trieste是一个多学科的国际研究中心,专门从事材料和生命科学领域的储物环和自由电子激光器的同步辐射。学校致力于纪念教授。吉尔伯托·弗拉克(Gilberto Vlaic)成立于1990年,是撒丁岛第一所SILS学校,其次是双年度版本。Vlaic教授是X射线吸收光谱的先驱之一,并为其发育和多个应用做出了重大贡献。学校在场,没有预见的在线参与。